
Pseudorandom numbers generators

Alexander Shevtsov

May 17, 2016

Contents

1 Introduction 2
1.1 Real random data. 2
1.2 Pseudorandom data. 4

2 Pseudorandom number generators 5
2.1 Linear congruential generators . 5
2.2 Lagged Fibonacci generator. 6

3 Cryptographically secure PRNGs 7
3.1 Blum Blum Shub . 7

1

1 Introduction

The need of random numbers occurs in different fields, for example in statistics, in
cryptography, in computational mathematics1.

We won’t go into a detailed discussion of what randomness really is. An informal
discussion suffices for our purposes. A good informal definition is that random data
is unpredictable. A bit later we will state formal properties of a cryptographically
secure pseudorandom number generator.

Let’s find out the difference between random data and pseudorandom data.

1.1 Real random data.

Real random data can be obtained by measuring some physical characteristic of a
physical process. The best means of obtaining unpredictable random numbers are
done by measuring physical phenomena such as radioactive decay, thermal noise in
semiconductors, sound samples taken in a noisy environment, and even digitised
images of a lava lamp. However, few computers (or users) have access to the kind
of specialised hardware required for these sources, and must rely on other means of
obtaining random data.

Modern approaches which don’t rely on special hardware have ranged from precise
timing measurements of the effects of air turbulence on the movement of hard drive
heads [8], timing of keystrokes as the user enters a password, timing of memory
accesses under artificially-induced thrashing conditions, and measurement of timing
skew between two system timers (generally a hardware and a software timer, with
the skew being affected by the 3-degree background radiation of interrupts and other
system activity). In addition a number of documents exist which provide general
advice on using and choosing random number sources [9].

Consider an ideal coin toss, its result can be interpreted as a random bit of data and
coin tossing as a random number generator. One could say, that if we knew all the
forces at the moment of tossing, exact velocities of the air flow when the coin is in
the air and all factors of that kind, we could predict the result of the toss. However,
there are physical processes, result of which cannot be predicted at all, that is what
quantuum mechanics teaches us. Therefore, “real” random numbers do exist and one

1For instance, digits of number π can be computed using random numbers, first it was done by
French naturalist Georges-Louis Leclerc, Comte de Buffon in 1777.

2

day there could be a hardware random number generator that is unbreakable by any
means of the attacker.

The measure for randomness is called entropy [4]. Here’s the high-level idea. If you
have a 32-bit word that is completely random, it has 32 bits of entropy. If the 32-bit
word takes on only four different values, and each value has a 25% chance of occurring,
the word has 2 bits of entropy. Entropy does not measure how many bits are in a
value, but how uncertain you are about the value. You can think of entropy as the
average number of bits you would need to specify the value if you could use an ideal
compression algorithm. Note that the entropy of a value depends on how much you
know. A random 32-bit word has 32 bits of entropy. Now suppose you happen to
know that the value has exactly 18 bits that are 0 and 14 bits that are 1. There are
about 228.8 values that satisfy these requirements, and the entropy is also limited to
28.8 bits. In other words, the more you know about a value, the smaller its entropy
is.

It is tempting to be optimistic about the amount of entropy that can be extracted from
various sources. There exists software that will generate 1 or 2 bytes of supposedly
random data from the timing of a single keystroke. Cryptographers in general are far
more pessimistic about the amount of entropy in a single keystroke. A good typist can
keep the time between consecutive keystrokes predictable to within a dozen millisec-
onds. And the keyboard scan frequency limits the resolution with which keystroke
timings can be measured. The data being typed is not very random either, even if
you ask the user just to hit some keys to generate random data. Furthermore, there is
always a risk that the attacker has additional information about the ”random” events.
A microphone can pick up the sounds of the keyboard, which helps to determine the
timing of keystrokes. You should be very careful in estimating how much entropy you
think a particular piece of data contains.

Aside from the difficulty of collecting real random data, there are several other prob-
lems with its practical use.

• First of all, it is not always available. If you have to wait for keystroke timings,
then you cannot get any random data unless the user is typing. That can be
a real problem when your application is a web server on a machine with no
keyboard connected to it. A related problem is that the amount of real random
data is always limited. If you need a lot of random data, then you have to wait;
something that is unacceptable for many applications.

• A second problem is that real random sources, such as a physical random num-
ber generator, can break. Maybe the generator will become predictable in some
way. Because real random generators are fairly intricate things in the very noisy

3

environment of a computer, they are much more likely to break than the tradi-
tional parts of the computer. If you rely on the real random generator directly,
then you’re out of luck when it breaks. What’s worse, you might not know
when it breaks.

• A third problem is judging how much entropy you can extract from any specific
physical event. Unless you have specially designed dedicated hardware for the
random generator it is extremely difficult to know how much entropy you are
getting.

1.2 Pseudorandom data.

Is there any way for an algorithm to produce random data? No, because algorithms
have in its very basic idea the property of outputting the same result, whenever they
are given the same input data. That’s why algoritimically generated random data (or
pseudorandom data) technically is not random at all, however there are still reasons
for that title.

Pseudorandom data is generated by a determenistic algorithm with given initial value
called seed. If you know the seed, you can predict the pseudorandom data. We want
generated data be unpredictable, the exact form of this requirement depends on the
usage of that generator. Usually there two types of pseudorandom number generators
(PRNG): ordinary ones and cryptgraphically secure. Ordinary PRNG should pass
statistical randomness tests, while the latter should have following properties:

• Given the first k bits of a random sequence generated by cryptographically se-
cure PRNG, there is no polynomial-time algorithm that can predict the (k+1)th
bit with probability of success better than 50%. Andrew Yao proved in 1982
that a generator passing the next-bit test will pass all other polynomial-time
statistical tests for randomness. [5]

• Cryptographically secure random number generator should withstand “state
compromise extensions”. In the event that part or all of its state has been
revealed (or guessed correctly), it should be impossible to reconstruct the stream
of random numbers prior to the revelation. Additionally, if there is an entropy
input while running, it should be infeasible to use knowledge of the input’s state
to predict future conditions of the CSPRNG state.

Traditional pseudorandom number generators, or PRNGS, are not secure against a
clever adversary. They are designed to eliminate statistical artifacts, not to withstand
an intelligent attacker. We have to assume that our adversary knows the algorithm

4

that is used to generate the random data. Given some of the pseudorandom outputs, is
it possible for him to predict some future (or past) random bits? For many traditional
PRNGS the answer might be yes. For a proper cryptographic PRNG the answer is
no.

2 Pseudorandom number generators

In this section we will take overview of some generators, that are not cryprographically
secure.

2.1 Linear congruential generators

Linear congruential generator was introduced by American mathematician Derrick
Henry Lehmer in 1949. Its idea is rather simple and can be described as following:

Xn+1 = (a ·Xn + c) mod m.

Seed of this generator is the initial value X0, other parameters are integers m, a, c.
Of course, the maximal period length of this generator cannot be greater than m,
however it can be smaller than m. For example we can consider m = 9, a = 2, c = 0
with initial seed X0 = 3. Then:

X1 = 2 · 3 mod 9 = 6

,
X2 = 2 · 6 mod 9 = 12 mod 9 = 3.

So only after 2 steps we came to the initial state. Try to think about needed require-
ments on a, c, and m that will make the cycle as large as it could be.

The exact requirements are:

1. Numbers c and m are coprime.

2. The number b = a − 1 is a multiple of p for any prime divisor p of the integer
m.

3. The number b is a multiple of 4, if m is a multiple of 4.

Further information: [3].

5

Exercise 1

Choose some values for a, c, m and X0. Write Wolfram code implementing linear
congruential generator.

Answer of exercise 1

a=51; c =36;m=113;
X[0] : = 5
X[n] :=Mod[a∗X[n-1]+c ,m]

Exercise 2

Find the period of your generator.

Answer of exercise 2

We want to find the distance between two successive occurances of the same number.
For this generator it’s sufficient to find the step at which the seed (initial value) is
occured.

i =1;
While [X[i] !=X[0] , i ++]

Here is a table for some popular values producing big periods.

Where it’s used m a c
Borland Delphi, Virtual Pascal 232 134775813 1

Turbo Pascal 232 33797 1
C++11’s minstd˙rand 231 − 1 48271 0

Java’s java.util.Random 248 25214903917 11

2.2 Lagged Fibonacci generator.

Recall the famous Fibonacci sequence, that is defined as following:

xn = xn−1 + xn−2.

With x1 = x2 = 1. We can consider that sequince modulo some integer m, it
will produce sequence that can be called random. However studies has shown, that
resulting sequence produces predictable results and has to be modified.

6

Lagged Fibonacci generator is defined as following:

Xn+1 = Xn−k + Xn−j mod m.

Usually m is equal to some power of two, for example 232. To produce a good generator
integers j and k should satisfy the following property: polynomial xk + xj + 1 must
be primitive modulo 2. Some of the pairs satisfying this property are:

j = 24, k = 55; j = 38, k = 89; j = 37, k = 100; j = 30, k = 127; j = 83, k = 258.

It has to be seeded with first max{j, k} values, not all of them should be even.

Exercise 3

Implement such a generator with j = 24 and k = 55 (choose yourself Xq for q <
max{j, k}).

Answer of exercise 3

j =24;k=55;
X[n] := I f [n>=Max[k , j] ,Mod[X[n-k]+X[n- j] , 2 ˆ 3 2] , n+1]

3 Cryptographically secure PRNGs

The design of CSPRNGs is usually a lot more complicated, than that of ordinary
PRNG. However there are some, that can be described quite easily.

3.1 Blum Blum Shub

Blum Blum Shub is a CSPRNG designed by Lenore Blum, Manuel Blum and Michael
Shub in 1986. It’s based on Michael Rabin’s oblivious transfer mapping [6].

Xn+1 = X2
n mod m.

Where M = pq is a product of two large primes p and q. The seed X0 should be
an integer that is coprime to M and not equal to 0 or 1. The two primes, p and q,
should both be congruent to 3 mod 4.

7

Exercise 4

Implement Blum Blum Shub using Wolfram Mathematica.

Answer of exercise 4

X[n] :=Mod[(X[n- 1]) ˆ 2 , 2]

Useful property of Blum Blum Shub is that any value Xi can be computed without
computing intermediate values:

Xn = X
2n mod (p−1)(q−1)
0 mod m.

Computational difficulty of cracking this algorithm is equivalent to quadratic residu-
osity problem [7].

Examples of other CSPRNG:

• Yarrow algorithm designed by Bruce Schneier. https://www.schneier.com/

academic/yarrow/

• Fortuna algorithm. [1]

• Algorithms using block ciphers and\or cryptographic hash functions for com-
puting the value.

8

https://www.schneier.com/academic/yarrow/
https://www.schneier.com/academic/yarrow/

References

[1] Niels Ferguson, Bruce Schneier, Tadayoshi Kohno. Cryptography Engineering:
Design Principles and Practical Applications Wiley Publishing, Inc., 2010

[2] Peter Gutmann. Software Generation of Practically Strong Random Numbers
Proceedings of the 7th USENIX Security Symposium San Antonio, Texas, Jan-
uary 26-29, 1998

[3] Donald Knuth. Art of Computer Programming, Volume 2: Seminumerical Algo-
rithms. Addison-Wesley Professional, 2014

[4] Claude Shannon. A Mathematical Theory of Communication. The Bell Systems
Technical Journal, 27:370-423 and 623-656, July and October 1948.

[5] Andrew Chi-Chih Yao. Theory and applications of trapdoor functions. In Pro-
ceedings of the 23rd IEEE Symposium on Foundations of Computer Science,
1982.

[6] Michael O. Rabin. How to exchange secrets by oblivious transfer. Technical Re-
port TR-81, Aiken Computation Laboratory, Harvard University, 1981.

[7] Lenore Blum, Manuel Blum, Mike Shub. A Simple Unpredictable Pseudo-Random
Number Generator. SIAM Journal on Computing. 15 (2)

[8] Don Davis, Ross Ihaka, and Philip Fenstermacher. Cryptographic Randomness
from Air Turbulence in Disk Drives Proceedings of Crypto ‘94, Springer-Verlag
Lecture Notes in Computer Science, No.839, 1994.

[9] Tim Matthews. Suggestions for random number generation in software. RSA
Data Security Engineering Report, 15 December 1995.

9

	Introduction
	Real random data.
	Pseudorandom data.

	Pseudorandom number generators
	Linear congruential generators
	Lagged Fibonacci generator.

	Cryptographically secure PRNGs
	Blum Blum Shub

