Contents

(1__Hash Functions|

Hashing Algorithms

September 19, 2016

[I.1 ~Usage of cryptographic hash tunctions|

(1.2 Requirements for hash functions|{.

2_SHA-2|
[2.1 Description| .

2.1.1 Paddingl

[2.1.6 lesting]
(2.2 SHA-2 family]|

B_MD5|
[3.1 Description| .

BT DPadding . . o o o o oo e

B.1.2 Partitionl.

3.1.4 Roundsl
[3.1.5 Testing]

[4.1.1 Birthday paradox|,

[4.1.2 Comparison|

[4.1.3 Preimage attacks|

1 Hash Functions

There are several similar terms to “hash function” checksum, fingerprint, crypto-
graphic hash function. Let’s start with stating the difference among them.

Hash function — a function that maps some data of variable length into a predefined
range of values. That’s all. For example a function that maps every integer into itself
can be called a “hash function”. Result of applying hash function is usually called
hash value or digest.

Checksums, fingerprint functions and cryptographic hash functions are different types
of hash function that have special purposes.

Checksum is a hash function used for checking the integrity of the data. For ex-
ample, if some error occurred during data transfer, checksum function should detect
it. Checksum is not meant to be “hard-to-reverse” function, neither it has to be
collision-resistant.

Fingerprint functions have more restrictions on their output. They are meant to
uniquely identify some piece of data, usually just files. Some of the fingerprint func-
tions are also designed to be resistant against special kinds of attacks.

Cryptographic hash functions have the most strict requirements. First, let’s list the
usage of cryptographic hash functions and then deduce which properties they should
have.

Further in this paper our attention we will be concentrated only on cryptographic
hash functions, so we will call them just hash functions.

For additional details see [§].

1.1 Usage of cryptographic hash functions

e Hashing passwords.
Storing database with plain text user passwords would cause severe problems,
if the database is stolen. Instead, a “sophisticated” developer stores hash values
of the passwords and whenever a user enters his password its hash is compared
to the saved one, this prevents hacker from discovering the password. However,
using just hashed values is not enough, because the hacker may have a precom-
puted table of hashes for frequent passwords. Therefore during the process of
storing password webmasters generate some random data called salt, append
salt to the real password and hash the “salted” password. Database stores both

hash of the salted password and the salt. Hacker can’t retrieve password as he
doesn’t know to which word he needs to append the salt.

e Integrity check.
Just as fingerprint functions, cryptographic hash functions are used to check the
integrity of data, but hash function protects the output not only from random
error, but also from an intentional corruption.

e Digital signatures.
Cryptographic algorithms used for digital signatures usually can’t be applied to
arbitrarily data, instead a message to be signed is initially hashed and after its
hash is signed. Verifying the authenticity of a hashed digest of the message is
considered proof that the message itself is authentic.

e Proof of work.
A proof-of-work system (or protocol, or function) is an economic measure to
deter denial of service attacks (DDOS) and other service abuses such as spam
on a network by requiring some work from the service requester, usually mean-
ing processing time by a computer. A key feature of these schemes is their
asymmetry: the work must be moderately hard (but feasible) on the requester
side but easy to check for the service provider.

1.2 Requirements for hash functions

A “good” cryptographic function has to be:
e hard to reverse;
e collision-resistant;
e having avalanche-effect.

These are general requirements for any hash function, however some special-purpose
functions have additional requirements. For example having the same length of ev-
ery output, or inability to retrieve any information about the input. Hash function
doesn’t have to be “random”, but a good “random* function can be used as a “strong”
cryptographic hash function.

Let’s examine requirements more thoroughly.

“Hard to reverse” means that it’s should be computationally difficult to obtain mes-
sage whose hash is equal to the given one. In application to password hashing that

means, that is impossible to get plaintext password by its hash value. The term “com-
putationally difficult” depends on the context, usually there are some considerations
about hackers computing potential and it’s possible to choose appropriately strong
hash function. For instance, the most efficient attack reverting SHA-2 needs ~ 2!28
operations, modern computing power of the whole humanity needs thousands of years
to perform it.

Every hash has predefined range of values, usually it is a fixed length string, for
example SHA-256 outputs 256 bits. Therefore, there are not greater than 2256 different
SHA-256 hashes. This number is too big to perform a brute force attack.

Collision resistance means it’s hard to find two messages that produce the same hash
value. In application to digital signatures that means, that it’s impossible to change
the document without changing the signature.

Usually it’s achieved by so-called avalanche effect: a small change in input data would
cause significant change in the output. For example:

SHA224("The quick brown fox jumps over the lazy dog")
>0x730e109bd7a8a32b1cb9d9a09aa2325d2430587ddbc0c38bad911525
SHA224("The quick brown fox jumps over the lazy dog.")
>0x619cba8e8e05826e9b8¢519c0abc68f4th653e8a3d8aal4bb2c8cd4c

The only difference between messages is trailing period in the second one, but their
hashes are completely different.

2 SHA-2

In this section we will describe the specification of SHA-2 and implement SHA-256
using Wolfram Mathematica language.

SHA-2 (Secure Hash Algorithm 2) is a family of cryptographic hash functions. They
vary in the length of produced digest: SHA-224, SHA-256, SHA-384, SHA-512, SHA-
512/224, SHA-512/256. SHA-224 and SHA-384 are truncated versions of SHA-256
and SHA-512 respectively.

SHA-2 is defined in terms of low-level operations, but Mathematica is a high-level
language, so the implementation is bulky and slow. While being low-level is a dis-
advantage for Mathematica implementation, SHA-2 allows very fast implementations
to be built-in in modern processors.

Operations of SHA-2 are defined in terms of 32-bit words for SHA-256 and 64-bit
words for SHA-512.

We will use a list of 4 bytes to represent a 32-bit word.

Further we will use numbers written in hexadecimal, for example 170 is “Oxaa” or
aayg or just “aa”, if there is no confusion. Two-digit hexadecimal number represents
a byte in a natural way, as its value is between 0 and 255, for instance

ffie =255 =11111111,.

The data to encrypt we will call message. Its length should not be bigger than 264 —1
bits (= 2 million terabytes).

Implementation will be explicit and mimic low-level data structures, we will use an-
other approach for MD5 code.

Original specification can be found here: [2].

2.1 Description
2.1.1 Padding

Message should be divided into 512-bit blocks, therefore arbitrarily long message
should be padded with some data to have length equal to a multiple of 512 bits.

Suppose we have message M, its length is [bits. Padding is done in the following
way:

1. Append bit 1.

2. Append k zero bits, where k is the smallest non-negative solution to the equation
I+ k+1=448 mod 512.

3. Append length of the original message [as a 64-bit binary number.

First of all we need to load the message into Wolfram Mathematica. Mathematica
allows to load file as list of bytes using command:

msg=Import | "~/path/to/file", "Binary"|

Or we can enter the string by ourselves:

ImportString|["abc", "Binary"|

This code outputs list {97,98,99}. These 3 bytes are representing ASCII codes for
the message “abc”. Note, that usually operating systems put a newline character at
the end of the file, so the message “abc”, that is read as a file has length of 4 bytes
and its hash differs from the hash of just “abc”.

|I=Length | msg|*8;

Though the specification allows to encrypt message of (almost) any length, usual
computer files are stored as a collection of bytes and our implementation will work
only for that case. That means it cannot be used to hash data of, for example, 15
bits length; it works just for data with length in bits being a multiple of 8.

We need to append "1" bit to the end of the message. As we consider the message a
multiple of bytes, adding a bit will result in adding a byte 1000000, it’s binary form
of the number 128.

AppendTo|msg,128];

Then we add zero bytes of padding:

For|i=0,i<(k-7)/8,i++ ,AppendTo|msg,0]];
bitLength=IntegerDigits|[],2,64];

length=ImportString | ExportString|bitLength ,"Bit"],"Byte"|;
message—=msg~Join~length ;

At first this code adds k — 7 zero bits as we already added 7 by adding byte 10000000.
bitLength is the length [written in binary as a 64-bit long integer. Variable length
is bitLength written as 8 bytes. message is the padded message.

Note, that a single 1 bit padding is vital, because otherwise messages ending with
zeros would be the same after padding:

1—-10...0

10 — 10...0.

Of course, both of them would produce the same hash, which is unacceptable.

2.1.2 Partition

Next we need to divide message into 512-bit blocks My, My, ... M, _; and each of the
blocks partition into 32-bit words.

The following code does this:

M[i_,j]:=message[[64*xi+1+4x] ;; 64xi+4*(j+1)]]

So M[i,j] will produce jth word from ¢th block with 0 <7 <n—1and 0 <j <15.
This word is written as a list of 4 bytes.

For example, M[0,0] produces {97,98,99,128}. Now we need to convert a list of 4
bytes into a 32-bit word.

Exercise 1

Implement a function bytesTo32Word converting a list of 4 bytes into a list of 32 bits
representing these bytes.

Answer of exercise 1

bytesTo32Word [list _ | := Flatten|IntegerDigits|list , 2, 8]]

For example, the code

bytesTo32Word [M[0 ,0]]

outputs list {0,1,1,0,0,0,0,1,0,1,1,0,0,0,1,0,0,1,1,0,0,0,1,1,1,0,0,0,0,0,0,0}.

2.1.3 Constants
SHA-2 has sixty-four 32-bit round constants R[i| with 1 < ¢ < 64 and eight 32-bit
initial values HY, ..., HY.

HY is equal to first 32 bits of fractional parts of ith prime number for i from 1 to 8.
Written in hexadecimal these values are:

HY = 6a09e667
HY = 510e527f

HY = bb67ae85
HY = 9b05688c

HY = 3c6ef372
HY = 1f83d9ab

HY) = a54ff53a
HY = 5be0cd19

We will use variables H[0,i] for l??. Mathematica allows to input hexadecimal

numbers in the following way:

H[0,1]:=bytesTo32Word@IntegerDigits[16~"6a09e667 ,256]

H[0,8]:=bytesTo32Word@IntegerDigits[16~ "5be0cd19 ,256]

These eight values are the initial state of the hash.

Next we need 64 constants for 64 rounds of hashing. These constants are the first 32
bits of fractional parts of cube roots of the first sixty-four primes.

Exercise 2

Implement function to input these values.

Answer of exercise 2

R=Table|bytesTo32Word@IntegerDigits |
Floor|2" 32« FractionalPart [(Prime@i)~(1/3)|],256],{i,1,64}];

Their values in hexadecimal are:

428a2f98
d807aa98
e49b69c1
983e5152
27b70a85
a2bfe8al
19a4c116
748£82ee

71374491
12835b01
efbed786
a831c66d
2e1b2138
a81a664b
1e376¢c08
78a5636f

b5c0fbcf
243185be
0fc19dcé
b00327c8
4d2c6dfc
¢24b8b70
2748774c
84c87814

e9bbdbab
550c7dc3
240calcc
bf597fc7
53380413
c76¢cbla3
34b0bcbb
8cc70208

3956¢25b
72bebd74
2de92c6f
c6e00b£f3
650a7354
d192e819
391¢c0cb3
90befffa

59f111f1
80debife
4a7484aa
d5a79147
766a0abb
d6990624
4ed8aada
a4506c¢ceb

923f82a4
9bdc06a7
5cb0a9dc
06¢cab6351
81c2c92e
£40e3585
5b9ccadf
bef9a3£f7

ablcbedb
c19pf174
76£988da
14292967
92722c85
106aa070
682e6ff3
c67178£2

2.1.4 Functions

Hashing is uses 6 operations:
e bitwise XOR (&);
e bitwise AND (A);
e bitwise NOT (—);
e addition modulo 2% (+);
e right shift by n bits (S™);
e right rotation by n bits (R").
Each of these operations is meant to act on 32-bit words. Let’s define all of them.

For the first three we can use built-in Mathematica functions: BitXor, BitAnd,
BitNot.

Next we define a function for summing words modulo 232. First we translate 32-bit
words into decimal integers and after we just sum them modulo 32 and transform the
result back to a 32-bit word:

wordTolnteger [word |:=FromDigits|word ,2];
plus |wordl ,word2 |:=IntegerDigits]|
Mod| wordToInteger@wordl+wordToInteger@word2 ,2°32],2,32]

Function plus can be used in infix form: wordl~plus~word2= plus[wordl,word2].
Exercise 3

Define a function shift32Word that takes 2 parameters: 32-bit word z and a non-
negative integer n and returns word x shifted by n positions to the right.

Answer of exercise 3

shift32Word [x_,n_|:=PadRight|x,32,0 ,n]|

Right rotation can be done by using built-in Mathematica function RotateRight.

10

Next we define 6 functions that are used in every round:

Ch(z,y,z) = (x ANy) ® (—z A 2)
Maj(z,y,z) = (x Ay) & (x A z) @ (yAz)
Yo(z) = R*(x) ® R™(z) & R*(x)
Yi(z) = R°(x) ® R (z) & R*(x)
oo(z) = R'(z) ® R'®(z) ® S*(x)
o1(z) = R (z) ® R®(z) ® S"(x).

Exercise 4

Implement all these functions.

Answer of exercise 4

Chlx_,y ,z |:=BitXor|BitAnd|[x,y|,BitAnd|BitNot[x]|,z]]

Maj|x_,y_,z |:=BitXor|BitAnd|x,y|,BitAnd|x,z|,BitAnd|y,z|]|

Yo |x_]:=BitXor|RotateRight [x,2]| ,RotateRight[x,13] ,RotateRight |x,22]]
¥;:=BitXor |RotateRight [x,6] , RotateRight [x,11]| , RotateRight [x,25]]
0o:=BitXor |RotateRight [x, 7] , RotateRight [x,18] ,shift32Word [x,3]]
01:=BitXor |RotateRight [x,17]| , RotateRight [x,19] ,shift32Word [x,10]]|

Next we need a function to expand the 512-bit block (16 words) into 2048-bit (64
words). These 64 words are needed for 64 round of hashing.

W(i,j) = M(i,j) for j from 0 to 15

Exercise 5

Define function Wi, j.

Answer of exercise 5

W[i_,j_]:=If[j<—15,bytesTo32Word [M[i,j]],
o1 [W[i,]j-2]]~plussW[i,j-T7]~plus~
oo [W[i ,j-15]|~plus-W[i ,j- 16]]

11

2.1.5 Rounds

For every 512-bit block M*® SHA-256 hashing involves 64 rounds. Each round operates
on eight 32-bit variables a,b,c,d, e, f, g, h. At the start of each round the values of
these variables are set to the intermediate hash values from the previous round.

For the first round the values are set to be constants HY. Then after 64 rounds final
values for the variables are found and the new intermediate hash value is obtained
by adding the previous intermediate hash value to the variables a,b,d, e, f, g, h (mod-
ulo 232). Round actions are done by using defined above functions and combining
intermediate hash values. It can be done by the following Mathematica code:

n =Length|[message]|/64;
For|i=1,i<=n,i++,
a = H[i-1,1];

b = H[i-1,2];
¢ = H[i-1,3];
d = H|i-1,4[;
e = H[i-1,5];
f =H[i-1,6];
g = H[i-1,7];
h — H[i-1,8];
Do|

Tl=h~plus~%;[e|~plus~Ch|e,f g|~plus~R|[[]+1]]~plus~W[i-1,j|;
T2=>g|a|~plus~Maj|a,b,c]|;

h=g;

gt

d~plus~T1;

Y

b

U‘Oﬁ..@'—h

I
oo

a=T1l~plus~T2,{j,0,63}];
H|i,1|=a~plus~H|i-1,1];
H[i,2|=b~plus~H|i-1,2];
H[i,3]=c~plus~H|[i-1,3];
H[i,4]=d~plus~H[i-1 ,4];
H[i,5]=e~plus~H|[i-1,5];
H|i,6|=f~plus~H|i-1,6];
H[i,7|=g~plus~H|[i-1,7];
H[i,8|=h~plus~H[i-1,8];]

12

2.1.6 Testing

One of the most obvious and useful ways to validate the implementation of the algo-
rithm is to test on some data. Let’s see the hash of the message "abc".

Table |BaseForm | FromDigits [H[n,j]|,2],16],{j,1,8}]

Outputs this:

> ba7816bf, 8f01cfea, 414140de, 5dae2223, b00361a3, 96177adc, b410ff61, 20015ad

Which is the needed result. Test vectors and their hashes can be found for instance
herel.

Let’s change our message to the empty one and rerun the code.
> e3b0c442,98fclcl4, 9afbf4c8, 996fb924, 27aed1e4, 649b934c, a495991b, 7852b855

Which is also the correct value.

2.2 SHA-2 family

Other functions from the family, such as SHA-512, have similar structure, but with
other constants, block and word lengths, number of rounds and slightly different
functions X and o.

SHA-224 and SHA-384 are just truncated SHA-256 and SHA-512 with other initial
vectors. SHA-512/224 and SHA-512/256 are also truncated versions of SHA-256 and
SHA-512, but their initial vectors are defined by a special algorithm.

For instance, SHA-512 has 512-bit output, 80 rounds and operations defined for 64-bit
words.

Other values can be seen in the following table (all length values are in bits).

13

https://www.cosic.esat.kuleuven.be/nessie/testvectors/hash/sha/Sha-2-256.unverified.test-vectors

Hash Digest Internal Block Maximal | Word Number
function | length state length input length of rounds

(inter- length

mediate

value)

length
SHA-256 | 256 256 512 204 1 32 64
SHA-224 | 224 256 512 204 1 32 64
SHA-512 | 512 512 1024 2128 1 64 80
SHA-384 | 384 512 1024 2128 1 64 80
SHA- 256 512 1024 2128 1 64 80
512/256
SHA- 254 512 1024 2128 1 64 80
512/224

14

3 MD5

MD5 (Message Digest Algorithm 5) is a hashing algorithm developed in April 1992
by Ronald Rivest as an improvement to MDA4.

Nowadays MD5 is considered insecure, as there are found collisions and its usage
as a cryptographic hash function is now deprecated, while it still can be used as a
checksum function.

On the contrary to the SHA-2 implementation, the following one will use features
of Wolfram Mathematica language and won’t explicitly use low-level operations and
treat words as integer numbers.

Original specification can be found here: [IJ.

3.1 Description

MD?5 is similar to SHA-2. Both of them are based on Merkle-Damgéard construction,
it is a quite general method of creating hash functions. Briefly its idea may be
described as follows:

e divide the message into blocks of equal length,;

e construct a function (or a collection of functions) that takes as inputs interme-
diate hash value (the result from the previous block) and the next block of the
message;

e iteratively apply the function to the blocks of the message starting with some
predefined values called initial vector or initial values(IV).

3.1.1 Padding

Padding is almost the same as that of SHA-2.
Suppose we have message M, it length is [bits. Padding is done in the following way:
1. Append bit 1.

2. Append k zero bits, where k is the smallest non-negative solution to the equation
l+Fk+1=448 mod 512.

15

3. Append length of the original message [as a 64-bit little-endian]] integer.

3.1.2 Partition

MD5 has the same block length of 512 bits. Partition the padded message into n
consecutive 512-bit blocks My, My, ..., M,_1.

Next we need to partition the message and pad it. As we’ve already done these steps
for SHA-2 we won’t examine it step-by-step:

data=Partition |
Join [FromDigits | Reverse@Q# 256|& /Q
Partition |[PadRight | Append|# ,128]| ,Mod|56 ,64 , Length@#+1]],
4] ,Reverse@IntegerDigits [8 Length@+# 232 2||&@
ImportString | "abc" ,"Binary"|,16]

This code does both partitioning and padding.

3.1.3 Constants and functions

MD5 involves 64 rounds. For each round there is a rotation constant and an addition
constant.

Rotation constants:

r = {7,12,17,22,7,12,17,22,7,12,17,22.,7,12,17,22,5,9,
14,20,5,9,14,20,5,9,14,20,5,9,14,20,4,11,16,23 .4,
11,16,23,4,11,16,23,4,11,16,23,6,10,15,21,6,10,15,
21,6,10,15,21,6,10,15,21}

Addition constant for ith round is 32-bit fractional part of [sin(7)].

k = Table|Floor |2~ 32xAbs@Sin@i|,{i,1,64}]

MD5 operates on 128-bit state that is represented by four 32-bit words. Their initial
values are:

!That means the least significant byte goes first, see https://en.wikipedia.org/wiki/
Endianness.

16

https://en.wikipedia.org/wiki/Endianness
https://en.wikipedia.org/wiki/Endianness

hO = 16~ °67452301;
hl = 16" " efcdab89;
h2 = 16~ "98badcfe
h3 = 16°°10325476;

MD5 uses 4 different functions for round computations, ¢ is the number of round:

for 1 <i<16 f(z,y,2)=(xANy)B(@TANz), g=i—1

for 17 <i <32 f(x,y,2)=(zA2)D(ZAy), g=5i—4 mod 16
for 33 <1 <48 f(z,y,2)=2®ydz, g=3i+2 mod 16

for 49 <i <64 f(z,y,2)=y@®(2Va), g=T7i—7 mod 16.

We will define f and g in the body of the round loop.

We also need a left rotation of a word, but as we represent words as numbers we can’t
use Rotateleft

Exercise 6

Implement a left-rotate function that can operate on 32-bit integers (not list of bits).

Answer of exercise 6

rotateLeft [i ,p |:=BitOr|BitShiftLeft[i,p|,BitShiftRight[i,32-p]

i stands for “integer”, p for “positions”.

3.1.4 Rounds

Now we have all ingredients to construct the main loop:

Do[{a,b,c,d}={h0,h1,h2, h3};
Do|Which[1<=i <=16,

f=BitOr |BitAnd|b, c]|,BitAnd |BitNot |[b] ,d|];
g=1-1,
17<=1 <=32,
f=BitOr |BitAnd|d,b]|,BitAnd |BitNot|d]|,c|];
g-Mod[5i-4,16],
33<=1<=48,
f=BitXor|b,c,d];

17

g-Mod[3i +2,16],

49<=i <=64,

f=BitXor|c,BitOr|b,BitNot[d]|+2"32]];

g-Mod|7i-7,16]];

{a,b,c,d}={d, rotateLeft |[#1,#2]|&]|

Mod[a+f+k [[1]]+w[[g+1]].2"32],r[[i]]]+b,b,c},{i,

1,64}];{h0,h1,h2, h3}=
Mod|[{h0,h1,h2,h3}+{a,b,c,d},2°32],{w,data }|;

As you can see, for every round we compute f and ¢g and combine the intermediate
hash values.

Finally, let’s write a function that takes a string and returns its hash:

md5|string String]|:=
Module[{r={7,12,17,22,7,12,17,22,7,12,17,22,7,12,17,
92.,5.9,14,20,5,9,14,20,5,9,14,20,5.,9,14,20 ,4,
11,16,23,4,11,16,23,4,11,16,23.,4,11,16,23,6,10,
15,21,6,10,15,21,6,10,15,21,6,10,15,
21}7
k=Table | Floor[2" 32+ Abs@Sin@i|,{i,1,64}],h0=16""67452301,
h1=16""efcdab89 ;h2=16""98badcfe ,h3=16""10325476,
data=Partition |
Join [FromDigits | Reverse@+# ,256|& /@
Partition |
PadRight |Append|# ,128] ,Mod|56 ,64 , Length@# +1]]| ,4],
Reverse@IntegerDigits |8 Length@# 2732 2||&@Q
ImportString [string ,"Binary"|,16],a,b,c,d,f,g},
Do[{a,b,c,d}={h0,hl1 ,h2 h3},
Do| Which[1< =i < =16,
[=BitOr [BitAnd[b,c|,BitAnd[BitNot[b| ,d|];g=i-1,
17<=1 <=32,f=BitOr [BitAnd[d,b] ,BitAnd [BitNot[d] ,c |];
g=Mod|[5i-4,16],33 <=i<=48,f=BitXor|b,c,d];
g=Mod[3i+2,16],49 <=1 <=064,
f=BitXor[c,BitOr[b,BitNot [d]|+2 "~ 32]];
e=Mod[7i-7,16]];{a.b,c,d}={d,
BitOr | BitShiftLeft [#1,#2], BitShiftRight[#1,32- #£2||&|
Mod[a+f+k [[1]]+w[[g+1]],2"32],r[[i]]]+Db,b,
¢}, {i,1,64}];{h0,hl,h2 h3}=
Mod[{hO,h1,h2 ,h3}+{a,b,c,d},2°32],{w,data}];

HOX”N\J

18

IntegerString |
FromDigits |
Flatten|Reverse@IntegerDigits|#,256,4|&/@{h0,h1,h2,h3}],
256,16 ,32]]

3.1.5 Testing

Let’s start with the empty string.
md5 [nn]

Outputs “0xd41d8cd98f00b204e9800998ect8427e”. That’s correct!
md5 | "abe" |

Outputs "0x900150983cd24fb0d6963{7d28e1 772" which is also the right value. Other
test vectors you can find herel

19

http://www.nsrl.nist.gov/testdata/

4 Security

4.1 Collision attacks
4.1.1 Birthday paradox

For this subsection we need to have a shallow dive into mathematics.
There is a known problem called “birthday paradox’ﬂ. It can be stated as follows:

What is the probability that in a set of 23 randomly chosen people at least
two people have birthday on the same day of the year?

By intuition probability is not expected to be very large, as for a particular person the

probability of him having birthday on a given day is %. Therefore the probability

for a person to have the same birthday as another person

1
23 - — =~ 6.3%.
365 %

That’s false. Let’s have more accurate computations. We denote the probability of
all people from the group having different birthdays as p.

Obviously,
p =1- b,
where p is the probability of (at least) two people having the same birthday.

Let’s take a random person from the group and remember his birthday. Take another
person, the probability he has different birthday is

1
11— —.
365

Let’s take third person, the probability of him having the birthday distinct from the
previous two persons is

2
1——.
365
Proceeding this deduction we come up with the final formula:
1 2 22
p=(1—=—)-(1—=—)-...- (1 — =) =~ 49.27%.
P=m) U mggg) e (Lo 5g5) & 40274

2To be precise, it’s not a paradox, rather a “pseudoparadox”, because it doesn’t lead to a logical
contradiction, just its correct solution is counter intuitive

20

Therefore
p=1-p=>50.73%.

So a group of 23 people more likely has two people with the same birthday than not
having.

Generalizing that idea shows, that for a “good” hash function that outputs n bits we
need only 22 = /2" tries to find a pair of inputs that produce the same hash (instead
of expected 2").

4.1.2 Comparison

Hash function Security claim Best attack

MD5 264 218

SHA-1 280 260
SHA-256 2128 31 of 64 rounds
SHA-512 2256 24 of 80 rounds

Modern PC can find collision for MD5 in few seconds, but breaking SHA-1 is not
possible using desktop computer. However, attack is feasible with large amounts of
computation power like a cluster or a supercomputer.

Example of two different messages with the same hash (in hexadecimal):

1. 4dc9681t0ee35c¢209572d4777b721587d36fa7h21bdc56b74a3dc0783e7h9518afhfa200
a8284bf36e8e4bb5b351427593d849676da0d1555d8360fb5{07fea2

2. 4dc968ff0ee35c209572d4777b721587d36fa7b21bdc56b74a3dc0783e7b9518afbfa202
a8284b136e8e4b55b35£427593d849676da0d1d55d8360tb5t07fea2

4.1.3 Preimage attacks

Preimage attack is a process of finding the message that has hash digest equal to the
specific one. Birthday paradox is not applicable for this attack, therefore performing
a successful preimage attack is much harder than collision attack. For example, both
SHA-256 and MD5 are considered strong against this attack today (2016).

Hash function Security claim Best attack

MD5 o128 0123.4
SHA-1 2160 45 of 80 rounds
SHA-256 2256 43 of 64 rounds
SHA-512 2512 46 of 80 rounds

21

References

[1]

2]

3]

4]

[5]

6]

7]

18]
19]

Network Working Group, The MD5 Message-Digest Algorithm https://wuw.
ietf.org/rfc/rfc1321.txt

NIST, Descriptions of SHA-256, SHA-384, and SHA-512 https:
//web.archive.org/web/20130526224224/http://csrc.nist.gov/groups/
STM/cavp/documents/shs/sha256-384-512. pdf

Marc Stevens, Single-block collision attack on MDJ5. https://marc-stevens.
nl/research/md5-1block-collision/md5-1block-collision.pdf

Philip Hawkes, Michael Paddon, Gregory G. Rose, Musings on the Wang et al.
MD5 Collision. http://eprint.iacr.org/2004/264 . pdf

Tao Xie, Fanbao Liu, Dengguo Feng, Fast Collision Attack on MDS5. https:
//eprint.iacr.org/2013/170.pdf

A. 7. Broder, Some applications of Rabin’s fingerprinting method. In Sequences
II: Methods in Communications, Security, and Computer Science. Springer-
Verlag, 1993, pages 152-153

Katz, Jonathan and Lindell, Yehuda, Introduction to Modern Cryptography.
Chapman & Hall/CRC, 2007

Bruce Schneier, Applied Cryptography John Wiley & Sons, Inc., 1996
Douglas R. Stinson, Cryptography: theory and practice. CRC Press, 1995

22

https://www.ietf.org/rfc/rfc1321.txt
https://www.ietf.org/rfc/rfc1321.txt
https://web.archive.org/web/20130526224224/http://csrc.nist.gov/groups/STM/cavp/documents/shs/sha256-384-512.pdf
https://web.archive.org/web/20130526224224/http://csrc.nist.gov/groups/STM/cavp/documents/shs/sha256-384-512.pdf
https://web.archive.org/web/20130526224224/http://csrc.nist.gov/groups/STM/cavp/documents/shs/sha256-384-512.pdf
https://marc-stevens.nl/research/md5-1block-collision/md5-1block-collision.pdf
https://marc-stevens.nl/research/md5-1block-collision/md5-1block-collision.pdf
http://eprint.iacr.org/2004/264.pdf
https://eprint.iacr.org/2013/170.pdf
https://eprint.iacr.org/2013/170.pdf

	Hash Functions
	Usage of cryptographic hash functions
	Requirements for hash functions

	SHA-2
	Description
	Padding
	Partition
	Constants
	Functions
	Rounds
	Testing

	SHA-2 family

	MD5
	Description
	Padding
	Partition
	Constants and functions
	Rounds
	Testing

	Security
	Collision attacks
	Birthday paradox
	Comparison
	Preimage attacks

