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1 Introduction

Most of the cryptographic algorithms use some sort of secret information that
is used for encryption and decryption. That information must be known only
to parties involved in communication. Even if the eavesdropper manages
to understand which encryption algorithm is used, this secret information
(usually called key or password) prevents him from decrypting the message.

The Diffie1-Hellman2 key agreement protocol (published in 1976) was the
first practical method for establishing a shared secret over an insecure com-
munication channel.

Prior to that time, all useful modern encryption algorithms had been sym-
metric key algorithms, in which the same cryptographic key is used with the
underlying algorithm by both the sender and the recipient, who must both
keep it secret. All of the electromechanical machines used in WWII were of
this logical class, as were the Caesar and Atbash ciphers and essentially all
cipher systems throughout history. The ’key’ for a code is, of course, the
codebook, which must likewise be distributed and kept secret, and so shares
most of the same problems in practice.

Of necessity, the key in every such system had to be exchanged between the
communicating parties in some secure way prior to any use of the system (the
term usually used is ’via a secure channel’) such as a trustworthy courier with
a briefcase handcuffed to a wrist, or face-to-face contact, or a loyal carrier
pigeon. This requirement is never trivial and very rapidly becomes unman-
ageable as the number of participants increases, or when secure channels
aren’t available for key exchange, or when, as is sensible cryptographic prac-
tice, keys are frequently changed. In particular, if messages are meant to
be secure from other users, a separate key is required for each possible pair
of users. A system of this kind is known as a secret key, or symmetric key
cryptosystem. D-H key exchange (and succeeding improvements and vari-
ants) made operation of these systems much easier, and more secure, than
had ever been possible before in all of history.

1Bailey Whitfield Diffie (born June 5, 1944), an American cryptographer
2Martin Edward Hellman (born October 2, 1945), an American cryptologist
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2 Mathematical preliminaries

Perhaps the only mathematical object you need to know is the concept of
group.
Definition. A group 𝐺 is a non-empty set with a defined binary operation
(×) called composition that obeys following laws:

1. (𝑎× 𝑏)× 𝑐 = 𝑎× (𝑏× 𝑐) ∀𝑎, 𝑏, 𝑐 ∈ 𝐺 (associativity of composition).

2. There exists an identity element of 𝐺 denoted as 𝑒, such that compo-
sition of any element 𝑎 with identity element produces 𝑎:

∀𝑎 ∈ 𝐺 𝑎× 𝑒 = 𝑎

3. For any element 𝑎 there exists inverse element: ∀𝑎 ∈ 𝐺 ∃(𝑎−1) : 𝑎 ×
(𝑎−1) = 𝑒.

The definition of binary operation

× : 𝐺×𝐺 → 𝐺

means that by taking two elements of group we can produce another element
of group. So the group is closed under composition operation: the result of
composition is some element from the group.

Notation 𝑎𝑛 for an element 𝑎 of some group 𝐺 and some integer 𝑛 means:

𝑎𝑛 = 𝑎× 𝑎× . . .× 𝑎⏟  ⏞  
n times

.

For negative 𝑛 it’s defined as follows:

𝑎(−𝑛) = (𝑎−1)𝑛.

Element in zeroth power is defined as usual:

𝑎0 = 𝑒.

Definition. A group 𝐺 with binary operation × is called commutative or
abelian if for any two elements 𝑎, 𝑏 of the group holds:

𝑎× 𝑏 = 𝑏× 𝑎
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It’s clear, that instead of using symbol × for defined binary operation we can
use any other symbol, for example +, or ·. Traditionally symbol + is used
for abelian groups and such groups are called additive groups, in that case
the identity element is denoted as 0 and the inverse element of 𝑎 is denoted
as −𝑎.

Symbol · is used for non-abelian groups, these groups are called multiplica-
tive, the identity element is sometimes denoted as 1. Often the composition
operation in multiplicative groups is omitted, so 𝑎·𝑏 = 𝑐 becomes just 𝑎𝑏 = 𝑐.

For abelian groups power notation transforms as follows: 𝑎𝑛 = 𝑎×𝑎×𝑎 . . .×𝑎
becomes 𝑎+ 𝑎+ · · ·+ 𝑎 = 𝑛𝑎 (yes, that may be confusing).

Examples of groups: integer numbers Z with the respect to addition, same
for real numbers R and complex numbers C.

When some set has several group structures simultaneously, considered group
structure is understood from context or explicitly expressed, for instance
(R,+) shows that we are going to view reals numbers as a group with respect
to addition.

Exercise 1

Above examples are all abelian, give an example of non-abelian group.

Answer of exercise 1

One of the most common examples of groups is a group of symmetries of some
geometric obejct. For example consider a equilaterial triangle in a plane. All
bijections of a plane that map vertices into vertices and edges into edges form
a group dihedral group 𝐷3. Indeed, the composition of a two such bijections
is again a bijection that maps vertices to vertices and edges to edges, all
other group axioms hold too. This group consists of 6 elements and is not
abelian.

Consider a clockwise rotation.
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𝑟𝑜𝑡𝑎𝑡𝑒−−−→

Consider reflection with respect of median from bottom right vertex.

𝑟𝑒𝑓𝑙𝑒𝑐𝑡−−−→

Let’s compose these operations.

𝑟𝑜𝑡−→ 𝑟𝑒𝑓−−→

Composition taken in reverse order.

𝑟𝑒𝑓−−→ 𝑟𝑜𝑡−→

Composition of rotation with reflection does not equal to itself taken in the
reverse order.
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Exercise 2

Do integers form a group with the respect to multiplication operation?

Answer of exercise 2

No, because the only elements for which inverse elements exist are 1 and −1.

Further we will consider only groups with finite number of elements.

Some more definitions:

Definition. Generators 𝑔1, 𝑔2, . . . , 𝑔𝑛 of a group 𝐺 are elements, such that
any other element 𝑥 of a group can be written in form:

𝑥 = 𝑔𝑛1
1 𝑔𝑛2

2 . . . 𝑔𝑛𝑘
𝑛 .

So generators are sort of constructing blocks for a group. A group is called
cyclic, if it can be constructed with a single generator 𝑔. That means that
any element 𝑥 can be obtained by composing 𝑔 with itself:

∀𝑥 ∈ 𝐺∃𝑛 ∈ Z : 𝑔𝑛 = 𝑥.

Cyclic groups may have more than one generator, for example (Z,+) has two
generators 1 and −1. Indeed, any integer can viewed as sum of ones:

𝑎 = 1 + 1 + · · ·+ 1⏟  ⏞  
a times

= −((−1) + (−1) + · · ·+ (−1)⏟  ⏞  
a times

.

We will use group (Z𝑝, ·). It consists of nonzero elements of integers modulo
some prime number 𝑝. Composition operation is defined naturally:

(𝑎 mod 𝑝) · (𝑏 mod 𝑝) = (𝑎 · 𝑏) mod 𝑝.

This group is called multiplicative group of integers modulo 𝑝. Generators
of this group are integers ̸= 1.

Exercise 3

Compute 123456 · 654321 in Z1000003.
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Answer of exercise 3

611039.

It’s all mathematical information you need.

Additional information can be found in any book about abstract algebra, for
example [4].
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3 Diffie-Hellman key exchange 3

3.1 Analogies

Let’s start with some analogies. At first imagine Alice wants to send Bob
a box with something valuable via post. But Alice considers post unreli-
able and potentially someone involved in delivery can steal the inside. The
structure of the box allows Alice to lock it with a padlock.

What should she do?

If she simply locks a box with her padlock, Bob will not be able to unlock
it and to take the inside. However, there is a secure method of delivering
the box, it only requires Bob to possess another padlock. It can be done as
follows:

1. Alice locks a box using her padlock and sends it to Bob.

2. Bob receives a locked box and locks it with his padlock and sends back
to Alice.

3. Alice receives a box locked by two padlocks, Alice unlocks her padlock
and sends box back to Bob.

4. Bob receives a box with only his padlock, which he can unlock and
open the box.

Using these steps you can perform a transaction via insecure channel. In that
analogy post plays the role of an insecure channel, locking padlocks plays role
of computations made in D-H key exchange, cracking padlock plays the role
of a “difficult” task and the inside of the box plays the role of the shared secret
(imagine that the inside is just a paper with a written password). However,
it’s not the closest analogy, as this analogy requires more transactions than
D-H exchange.

Let’s view another analogy. In that one the role of the shared secret plays
the colour of the mixture. The process is illustrated in the image below:

3Authors suggest to call it Diffie-Hellman-Merkle key exchange in recognition of Ralph
Merkle’s contribution. Unfortunately, the title “Diffie-Hellman key exchange” is already
too widely spread.
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1. Alice and Bob choose a colour using an insecure channel (for example
via telephone call) and both prepare a mixture of a chosen colour.

2. Alice and Bob (secretly) choose some arbitrary, probably random colour
and prepare a mixture of this new colour and mix it with previously
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obtained mixture.

3. Alice and Bob send via insecure channel to each other obtained mix-
tures (leaving some amount for themselves for further actions).

4. Each of the recipient mixes the received mixture with his own one, so
both parties obtain the same colour.

In that analogy the “difficult” task is to obtain components of the mixture.

3.2 Implementation

Implementation depends on which group we’re going to use. In the most
simplest case the multiplicative group of integers modulo prime 𝑝 is used,
but D-H key exchange can use other groups too.

1. Alice and Bob via insecure channel choose a big prime number 𝑝, for
example 𝑝 = 3183.

2. Alice and Bob via insecure channel choose a generator 𝑔 of group Z𝑝,
for example 𝑔 = 2.

3. Alice chooses her secret number 𝑎, for example 𝑎 = 1000. Alice com-
putes 𝐴 = 𝑔𝑎.

p=3183;
g=2;
a=1000;
A=PowerMod [ g , a , p ]
(*A=3100*)

4. Bob chooses his secret number 𝑏, for example 𝑏 = 10000. Bob computes
𝐵 = 𝑔𝑏.

b=10000;
B=PowerMod [ g , b , p ]
(*B=772*)

5. Alice and Bob send to each other 𝐴 and 𝐵 via insecure channel.

6. Alice computes her shared secret 𝑄 = 𝐵𝑎.

Q=PowerMod [B, a , p ]
(*Q=961*)
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7. Bob computes his shared secret 𝑊 = 𝐴𝑏.

W=PowerMod [A, b , p ]
(*W=961*)

At the final step both Alice and Bob computed the same number (in our case
it’s 961).
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4 How does it work?

Let’s review the algorithm.

1. Why do we choose prime 𝑝?

We want to construct a finite (multiplicative) group of nonzero integers
modulo 𝑝. They form a group if and only 𝑝 is prime4. Bigger we take
𝑝 more difficult is cracking of the algorithm, details will be discussed
in security section.

2. Generators and exponentiation.

Usually generators are not too large, however it can be any integer
in Z𝑝 except 1. Computing power of an integer can be done via fast
exponentiation as described below.

Assume we got two integers 𝑥, 𝑦. For example 𝑥 = 5673345 and 𝑦 =
90987236. Näıve method will take 𝑦 − 1 = 90987235 operations of
multiplication 𝑥 by itself. Instead we can decompose 𝑦 = 2 · 45493618
and compute

𝑥𝑦 = 𝑥90987236 = 𝑥2·45493618 = (𝑥2)45493618.

Of course, we can continue process and decompose 𝑦 = 2 · 2 · 22746809,
then

𝑥𝑦 = (𝑥22)22746809.

At that step we got a power that is not divisible by 2, but we can
extract one multiplication:

𝑥𝑦 = (𝑥22)22746808+1 = 𝑥22 · (𝑥22)22746808

and so on. This process requires roughly log2 𝑦 multiplications, the
value is:

log2 𝑦 = log2 90987236 ≈ 26.

This method uses ninety millions multiplications less! For performing
exponentiation modulo 𝑝 we can optimize this algorithm even further:
at each step of squaring we can reduce resulting integer modulo 𝑝.

4Actually we could consider non-prime 𝑝 and take a multiplicative subgroup of invertible
elements in Z𝑝, in that case we should accurately take a generator of that group, it must
be an integer comprime to 𝑝.
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3. Shared secret.

Both Alice and Bob obtain the same final result, because

𝑄 = 𝐵𝑎 = (𝑔𝑏)𝑎 = 𝑔𝑏𝑎 = (𝑔𝑎)𝑏 = 𝐴𝑏 = 𝑊.

4. Eavesdropper’s view.

Imagine there is an eavesdropper named Eva who can bug the insecure
channel. She possesses values of 𝑝, 𝑔, 𝐴,𝐵, but that’s not enough to
compute common secret 𝐴𝑏 = 𝐵𝑎. That is, task of computing 𝑔𝑎𝑏

knowing only 𝑔, 𝑔𝑎, 𝑔𝑏 is computationally difficult and it’s the heart of
Diffie-Hellman key exchange algorithm security.
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5 Security

5.1 Diffie-Hellman problem

The security of Diffie-Hellman key exchange is based on complexity of Diffie-
Hellman problem. It can be stated as follows:

Given elements 𝑔, 𝑔𝑎, 𝑔𝑏 of some group, find the value of 𝑔𝑎𝑏.

Today the most efficient method to solve it is to solve the discrete logarithm
problem.

For additional information regarding Diffie-Hellman problem an problems
equivalent to it, see [5].

5.2 Discrete logarithm problem

Discrete problem is highly related to Diffie-Hellman problem, but it is more
general. It can be stated as follows:

Given elements 𝑔, 𝑎 of some group find the integer 𝑛 (if it exists), such that
𝑔𝑛 = 𝑎. On the contrary to the case of real or complex numbers, where log
can be computed using for instance Taylor series, in finite groups there is no
general algorithm to solve that problem. If considered group 𝐺 is not cyclic,
then no solution may exist for some 𝑔 and 𝑎, however in our case an integer 𝑛
always exists (it’s not unique), because we used cyclic group Z𝑝 where every
element is the generator 𝑔 raised to some power.

The most trivial algorithm is to raise 𝑔 to various powers until we get the
needed value 𝑎, but it’s too slow, because it involves numbers of operations
roughly equal to the number of the group elements. There are some more
sophisticated algorithms, but none of them is polynomial (in the number of
digits in the size of groups).

Some of them:

∙ Baby-step giant step. [3]

∙ Pollard’s rho. [1]

∙ Function field sieve. [2]

It’s important to note, that there is no solution for Discrete logarithm prob-
lem (yet), however it’s not proven that could be no computationally fast
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algorithm for solution of this problem. So, the security of Diffie-Hellman key
exchange (and some others cryptographic algorithms) is based on assumption
that such algorithm does not exist.

5.3 Man in the middle.

Pure Diffie-Hellman key exchange is vulnerable to attack known as “man in
the middle”. Consider the situation when the eavesdropper (Eve) can replace
messages of the communication participants with her own messages:

1. Alice chooses secret 𝑎, computes 𝐴 = 𝑔𝑎 and sends it to Bob.

2. Eve intercepts message of Alice and receives 𝐴. Then she chooses her
secret 𝑒, and sends Bob 𝐸 = 𝑔𝑒, imitating Alice.

3. Bob chooses secret 𝑏, computes 𝐵 = 𝑔𝑏 and sends it to Alice.

4. Eve intercepts message of Bob and receives 𝐵.

Now Eve is able to compute 𝑔𝑏𝑒 and 𝑔𝑎𝑒 and to imitate Bob and Alice. Neither
Bob nor Alice will know they are communicating with Eve, while Eve can
not only read encrypted messages of both Alice and Bob, but additionally
she can write her own messages mimicking Bob or Alice.

That’s why key exchange is used with additional security measures, for ex-
ample:

∙ usage of certificates;

∙ time examination (if it normally takes say 20 seconds to make a key
exchange, but the answer is received in 40 seconds that could mean
there is a man in the middle);

∙ some method of online transmitting.
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6 Additional information

6.1 Usage with more than two parties

Diffie-Hellman key exchange can be used for arbitrarily large number of par-
ticipants, let’s see a brief example for three of them, case for more number
of participants is similar.

1. Alice, Bob and Carol publicly choose prime number 𝑝 and generator 𝑔
of group Z𝑝.

2. Alice, Bob and Carol compute their own secrets: 𝐴 = 𝑔𝑎, 𝐵 = 𝑔𝑏,
𝐶 = 𝑔𝑐.

3. Alice sens her secret to Bob and Carol, Bob computes 𝐴𝑏 = 𝑔𝑎𝑏, Carol
computes 𝐴𝑐 = 𝑔𝑎𝑐. Bob sends 𝑔𝑎𝑏 to Carol and Carol sends 𝑔𝑎𝑐 to Bob.

4. Bob computes (𝑔𝑎𝑐)𝑏 and it’s his shared secret, same for Carol.

5. Carol sends Bob 𝑔𝑐.

6. Bob computes (𝑔𝑐)𝑏 and sends it to Alice.

7. Alice computes (𝑔𝑐𝑏)𝑎 and it’s shared secret.

An eavesdropper has been able to see 𝑔𝑎, 𝑔𝑏, 𝑔𝑐, 𝑔𝑎𝑏, 𝑔𝑎𝑐, and 𝑔𝑏𝑐, but cannot
use any combination of these to efficiently reproduce 𝑔𝑎𝑏𝑐.

6.2 In the wild

For secure usage prime numbers used in key exchange should be at least 2048
bit long (it’s approximately 620 decimal digits).

Successful attacks solving discrete logarithm problem were performed for
𝑝 ≈ 29234 (it’s about 2780 decimal digits), however it took equivalent of
400000 hours.

Computing hardware speed is always increasing, so if you want to use Diffie-
Hellman key exchange that would be secure in next few years, it’s recom-
mended to use at least 4096-bit long prime number 𝑝. Records of solving
discrete logarithm problem can be seen for example here.

16

https://en.wikipedia.org/wiki/Discrete_logarithm_records


References

[1] Menezes, Alfred J.; van Oorschot, Paul C.; Vanstone, Scott A. (2001).
”Chapter 3” (PDF). Handbook of Applied Cryptography.

[2] Leonard M. Adleman and Ming-Deh A. Huang. 1999. Function field sieve
method for discrete logarithms over finite fields. Inf. Comput. 151, 1-2
(May 1999).

[3] A. Stein and E. Teske, Optimized baby step-giant step methods, Journal
of the Ramanujan Mathematical Society 20 (2005), no. 1, 1–32.

[4] Serge Lang. Algebra. Springer-Verlag, New York, 2002.

[5] Feng Bao; Deng, Robert; Huafei Zhu (2003). ”Variations of
Diffie–Hellman problem”. ICICS ’03 (Springer-Verlag) 2836: 301–312.

17


	Introduction
	Mathematical preliminaries
	Diffie-Hellman key exchange
	Analogies
	Implementation

	How does it work?
	Security
	Diffie-Hellman problem
	Discrete logarithm problem
	Man in the middle.

	Additional information
	Usage with more than two parties
	In the wild


