
ALGORITHMIC RANDOMNESS

Aliaksandr Shautsou

Alexander Shen

Master Logique et Fondements de l'Informatique

Universit�e Paris Cit�e

Septembre 2022

Abstract

This memoire investigates the coding of arbitrary binary sequences into Martin-L�of ran-

dom sequences, statement known as Ku�cera-G�acs theorem, shows some proof approaches

an their limits. Theorem states that any sequence is Turing-reducible to a random sequence

via some Turing machine. After the discovery of fundamental fact of such reduction, subse-

quential results were aimed at lowering the asymptotic number of bits of the oracle needed

for computation. This document starts with used de�nitions, then proceeds with ideas of

proofs and brie�y discusses their drawbacks.

Contents

1 Basic de�nitions 2

1.1 Strings and sequences . 2
1.2 Cantor space . 2
1.3 Computation . 2
1.4 Semicomputability . 3
1.5 Kolmogorov complexity . 4
1.6 Pre�x-free Turing machines . 4
1.7 Oracle Turing Machines . 5
1.8 Algorithmic randomness . 7

2 Martingales 8

3 Dimension 11

3.1 Hausdor� dimension . 11
3.2 Constructive dimension . 11
3.3 Reducibility . 12

4 Ku�cera-G�acs theorem 13

4.1 Oracle-use . 14
4.2 Tree labeling . 14
4.3 Optimal decompression rate . 15
4.4 Block coding . 16

1

1 Basic de�nitions

1.1 Strings and sequences

We denote by 2<ω the set of �nite binary strings of words. 2ω or Ω denote the set of in�nite
binary sequences.

There is a partial order on the set of strings 2<ω, string a1a2 . . . ak = a ⪯ b = b1b2 . . . bj if
a1 = b1, a2 = b2, . . . , ak = bk, in that case a is called pre�x of b.

In the same way we call a �nite string a pre�x of an in�nite sequence, if the in�nite sequence's
starting symbols are equal to those of the �nite string.

We denote concatenation of strings by juxtaposition or by symbol ∗. By λ or Λ we denote the
empty string.

We �x an enumeration of all strings, λ ↔ 0, 0 ↔ 1, 1 ↔ 2, 00 ↔ 3 . . . , thus we will speak of
integers and �nite strings interchangeably.

Pre�x-free set of strings has no two words one of which is pre�x of another.

By Ωx we denote the set of all sequences starting with string x. Σ = 2<ω∪2ω is set of all binary
words and sequences, Σx denotes the set of words and sequences starting with the word x.

For a sequence X ∈ 2ω we denote by X ↾ n its �rst n symbols.

1.2 Cantor space

We consider the Cantor space 2ω =
∏

n∈N 2 which can be seen as a countable product of copies
of a discrete topological space with two points. Equivalently the topology on 2ω is generated
by cylinders Ωσ for σ ∈ 2<ω.

Measure of a cylinder is de�ned as:

λ(Ωσ) = λ(Σσ) =
1

2|σ|
.

1.3 Computation

We use computation model of Turing machines (TM). Turing machines have a single input
tape, the result of work of machine M on input τ is denoted as M(τ). Some of TMs may never
halt on some inputs, thus producing potentially in�nite output. If machine M halts on input
τ , we denote it by M(τ) ↓, if does not halt, then it's denoted by M(τ) ↑. If M halts on any
input, it is called total. Using the same model of computation, we can talk about machines
without input by considering the empty input string.

Fact 1.1. There is a Turing machine U , called universal TM, which can simulate any other
TM in the following sense. For any Turing machine M there is a �nite string pM (this string
is called program for M) and for any input string τ the following holds:

U(pMτ) = M(τ).

2

Computable (e�ective, algorithmic) functions f : N → N are those functions, for which exists
a machine M , such that ∀i ∈ N f(i) = M(i). Sometimes machine and computable function to
which it corresponds are used intechangeably.

Computable sequences are those, for which exists a Turing machine which given as input number
n prints out �rst n symbols of sequence, or equivalently for which exists a Turing machine which
never halts and outputs symbols of α.

The set of all sequences 2ω is uncountable, the set of Turing machines is countable, therefore
there exist uncomputable sequences.

We �x some presentation of rational numbersQ and consider them as �nite constructive objects.
Computably enumerable sets are those subsets of N, for which exists a TM without input that
prints out all elements of the set.

1.4 Semicomputability

Lower-semicomputable numbers are those ones, which can be e�ectively approximated from
below.

De�nition 1.1. A real number x ∈ R is called lower-semicomputable, if there exists a com-
putable function g : N → Q, such that

∀i < j : g(i) ≤ g(j),

lim
n→∞

g(n) = x.

Not all lower-semicomputable numbers are computable, for example we can consider character-
istic sequence of the Halting set ∅′ as a binary representation of some real number. As Halting
problem is undecidable, its binary representation is not computable, still we can approximate
it from below by running all Turing machines in parallel and writing out indices of the halting
ones, thus obtaining a computable approximation from below.

A number x ∈ R is computable, i� its lower- and upper-semicomputable, equivalently both x
and −x are lower-semicomputable. Another equivalent de�nition of lower-semicomputability is
that we can computably enumerate all rationals smaller than x.

In the same fashion we call a function f : 2<ω → R lower-semicomputable if we have uniform
approximation to the values of f .

De�nition 1.2. Function f : 2<ω → R is called lower-semicomputable, if there exists function
f̂ : 2<ω × N → Q, such that:

∀x lim
n→∞

f̂(x, n) = f(x),

∀x∀i < j f̂(x, i) ≤ f̂(x, j).

3

1.5 Kolmogorov complexity

Given some string σ, it's possible to �describe� it by some program which outputs σ. The length
of program can be seen as a measure of complexity of σ.

De�nition 1.3. Plain Kolmogorov complexity of a string σ is its shortest description using
some �xed universal Turing machine:

CU(σ) = min {|τ |: U(τ) = σ} .

Thus, every universal Turing machine produces its own version of Kolmogorov complexity,
though complexities relative to two di�erent universal Turing machines have di�erence bounded
by a constant.

Theorem 1.1 (Solomono�-Kolmogorov). For any universal Turing machines U1, U2 there
exists a constant C, such that for any string σ:

|CU1(σ)− CU2(σ)|< C.

It means plain Kolmogorov complexity is de�ned up to a constant term which often will be
denoted using big-O notation as O(1).

Plain Kolmogorov complexity of a string is not greater than its length (up to constant term),
indeed, there exists a machine M with program pM which just prints its input. Then

U(pMσ) = M(σ) = σ.

Therefore, each string σ has a description of length |p|+|σ| and for any string σ:

C(σ) ≤ |p|+|σ|= σ +O(1)

Intuitively Kolmogorov complexity of a string can be thought as a algorithmically extractable
information in that string, the higher is complexity, more information string contains.

From the other point of view, we can consider description via universal machine U as compres-
sion of the original string.

We call a string σ c-incompressible, or c-random for an integer c > 0, if its shortest description
is not shorter than |σ|−c.

Simple counting argument shows that incompressible strings exist, because number of strings of
length n is 2n and the number of possible shorter descriptions (strings of length < n) is 2n − 1.

1.6 Pre�x-free Turing machines

Besides plain Kolmogorov complexity, there are various more re�ned versions of complexity,
some of them are more suitable for particular applications.

A Turing machine M is called pre�x-free if its domain {σ ∈ 2<ω : M(σ) ↓} is a pre�x-free set
of strings. On the contrary to the plain Turing machines, pre�x-free machines read the input
bit by bit and making computations �without knowing� where the input ends.

4

Fact 1.2. There is a universal pre�x-free Turing machine U which can simulate any other
pre�x-free TM in the following sense: for any pre�x-free Turing machine M there is a �nite
string pM and for any input τ the following holds:

U(pMτ) = M(τ).

In the same way it's possible to de�ne pre�x-free Kolmogorov complexity relative to some
universal pre�x-free Turing machine U .

De�nition 1.4. Pre�x-free Kolmogorov complexity of σ is length the shortest pre�x-free de-
scription of σ relative to a �xed universal pre�x-free Turing machine U .

K(σ) = min {|τ |: U(τ) = σ} .

By �xing some computable encoding of pairs of strings ⟨x, y⟩ 7→ n, one can reason about
complexity of pairs or any �nite tuples of strings.

There is a conditional version of Kolmogorov complexity (it exists for all their variants, including
plain and pre�x-free ones).

De�nition 1.5. Conditional Kolmogorov complexity of string x under assumption of string y
is:

K(x|y) = min {|z|: U(⟨y, z⟩) = x} .

Equivalenlty, it can be de�ned as the length of the shortest program, which given input y outputs
x.

1.7 Oracle Turing Machines

There is widely used notion of relativization in computability theory. Its idea is to allow a
program to receive answers to the questions of the form �does x belongs to A?� for some given
A ⊂ N during its computation.

These computations are called relative to A, and the set A is called an oracle. By taking a
particular choice of A, it's possible to decide problems which otherwise are undecidable. For
instance, it's possible to take as A the Halting set, which would allow us at least to decide the
Halting problem itself.

Depending on the sequence of answers, oracle machine may produce di�erent outputs, thus
oracle machines can be seen as computable mappings T : 2ω → 2ω ∪ 2<ω. Result of work of an
oracle Turing machine M with oracle R is denoted as M(R).

An oracle Turing machine per se is just a �nite description of actions which machine does
duting computation, change of the oracle does not a�ect this description.

Every subset of N corresponds to its characteristic function, and values of this function on
successive naturals form an in�nite binary sequence, so it's possible identify oracles with se-
quences.

5

It's also possible to think of oracles as of random numbers generators. Then by running some
OTM with di�erent oracles, one can observe patterns in the output of the machine and apply
instruments of probability theory to OTMs.

Given an oracle Turing machine M we can consider the event

A(x) = �output of M begins with the word x�.

Probability of event A(x) is the measure of those sequences, that are mapped by M into Σx:

P(A(x)) = λ(M−1(Σx)).

This de�nes some function a on words:

a : 2<ω → R (1)

a(x) = P(A(x)).

From the properties of probability (measure) one can deduce the following statements:

1. a(x) ≥ 0,

2. a(Λ) = 1,

3. a(x) ≥ a(x0)+ a(x1), because events �output starts with x0� and �output starts with x1�
are non-intersecting subevents of �output starts with x�, but it does not have to be an
equality, since the output may exactly be x,

4. a is a lower-semicomputable function, because we can run M on ever-increasing pre�xes
of all possible sequences and write down which of the pre�xes produce result starting with
a given word and therefore �nd the sum of their measures.

Functions having the above properties are called lower-semicomputable semimeasures on 2ω.

Fact 1.3. Every lower-semicomputable semimeasure on 2ω is de�ned by some oracle Turing
machine M .

Given two lower-semicomputable semimeasures a and b, their average

c(x) =
1

2
(a(x) + b(x))

is again a lower-semicomputable semimeasure. In the same way we can try to make up series
composed of all lower-semicomputable semimeasures, for the result to be lower-semicomputable
we need a computable enumeration of all lower-semicomputable semimeasures. Such enumer-
ation can be obtained by enumerating all machines and algorithmically changing those ones,
which do not compute any lower-semicomputable semimeasures into the machine computing
them. Equivalently it's possible to consider a machine M , which given an oracle A, counts
number n of leading consecutive zeros of A and then runs nth OTM with oracle equal to A
without �rst n symbols. The resulting measure is a maximal (up to a constant factor) lower-
semicomputable semimeasure m on 2ω. For any other lower-semicomputable semimeasure a
exists a constant c, such that:

∀x ∈ 2<ω a(x) ≤ cm(x).

This construction gives rise to another version of Kolmogorov complexity.

6

De�nition 1.6. A priori complexity of a word x ∈ 2<ω is the value

KA(x) = log
1

m(x)

for some maximal lower-semicomputable semimeasure on 2ω.

As other types of complexity, a priori complexity is also de�ned up to a constant term, because
maximal semimeasure is de�ned up to a constant factor.

A priori complexity can be used to characterize computable sequences.

Theorem 1.2. A sequence X ∈ 2ω is computable, if and only if a priori Kolmogorov complexity
of its pre�xes is bounded:

∃c∀n KA(X ↾ n) < c.

Proof. If the a priori complexity of any pre�x of X is bounded, it means the corresponding
maximal semicomputable semimeasure m is separated from zero:

∃b∀n m(X ↾ n) ≥ b > 0.

We can consider the set B of all words w, on which m(w) ≥ b. This set is computably
enumerable, since we can �nd increasing approximations to the values of m(w) for all words w,
once a particular approximation is bigger than b, we write out that word.

This set is a tree, since m can only increase when we take shorter pre�xes of a word. Every
pre�x-free subset of this set cannot have more than 1

b
elements, because events corresponding

to these words are not intersecting. Then we can take the maximal (by number of elements)
pre�x-free subset. For a word from B we can consider the set of its extensions belonging to B, all
of them are comparable, since otherwise it would contradict maximality of the previously taken
pre�x-free set. We also know that X ↾ n belongs to this set, therefore it is some computable
branch in this tree.

1.8 Algorithmic randomness

There is some intuitive notion of randomness, for example one can consider the outcome of
coin toss as a random result. This intuitive notion can be formalized in di�erent ways, and one
of the approaches for formalizing is the computability theory. This approach itself splits into
several (sub)approaches.

At �rst glance we could say that random sequences are those ones, which cannot be computed,
however we can consider the next argument.

Given an uncomputable sequence α = α0α1α2 . . . ∈ 2ω, it's possible to make it sparse by
inserting a zero (or one) in every other place to obtain:

β = 0α00α10α2 . . .

this resulting sequence is not computable (otherwise the original sequence α would also be
computable), however it's not that easy to call it random.

7

To capture that idea, Per Martin-L�of [6] constructed a de�nition of algorithmically random
sequence using e�ective null sets. We need some preliminary notions to give its de�nition.

On a real line R a measurable subset has measure equal to zero, if it has covers of arbitrarily
small measure. This de�nition can be made e�ective by requiring the process of covering to be
algorithmic.

We can consider a TM which prints out strings σi as outputting open sets Ωσi
, these cylinders

cover some subset of the Cantor space 2ω. The size of the cover is λ(∪Ωσi
).

De�nition 1.7. An e�ective null set is a total computable function f : Q× N → 2<ω:

∀q ∈ Q λ(
⋃
i∈N

Ωf(q,i)) ≤ q.

These e�ective null tests are also sometimes called Martin-L�of tests.

Sets of the form (∪AΩσi
) for e�ectively enumerable set A are called e�ectively open or Σ1

0 sets,
and their complements are Π1

0 sets.

We can treat a sequence as non-random one, if it has some feature, i.e. it falls into some
e�ective null set. Conversely we call a sequence algorithmically random if it does not belong
to any e�ective null set and therefore has no e�ective distinctive features.

De�nition 1.8. A sequence α ∈ 2ω is called (Martin-L�of) random, if it belongs to no e�ective
null set. The set of all Martin-L�of random sequences is denotes by Rand.

If a sequence passes a Martin-L�of test, then it's not random, so it's natural to call Martin-L�of
tests as nonrandomness tests.

Since there are only countably many possible tests, each of them de�ning some e�ective null
set, their union has measure equal to zero. However, it does not directly imply that that union
is e�ectively null. Stil, this fact is true.

Fact 1.4. There is the maximal (by inclusion) e�ectively null set U which is called universal
Martin-L�of test, U ⊃ V for any other e�ectively null set V .

2 Martingales

The other approach to capture the notion of randomness is the �gambling� idea. One can
imagine a game of chance in which player bets on the sequences of outcomes of a coin toss.
Player can split his capital in parts and make bets on both possible outcomes � zero and one,
and the player must make a bet on every successive outcome.

If player guesses the next outcome, he receives double of his bet on this outcome, the incorrect
guess takes away the whole bet made on the incorrect outcome.

The behaviour of a player can be described by his capital on a sequence of outcomes. If the
sequence of outcomes is computable, of course the player can compute the next outcome and
bet all his money on it, e�ectively increasing his capital. In that sense computable sequences

8

are non-random. Random sequences are those sequences, which cannot unboundedly increase
capital of an algorithmic player.

If we consider such game, where the capital which is bet on the outcome of a coin toss doubles,
if the guess is right; and is taken away, if the guess is wrong, we can de�ne the martingale,
a non-negative function on �nite strings, which equals to the capital of the player after the
sequence of outcomes encoded by a word has played.

De�nition 2.1. Martingale is a function d : 2<ω → R≥0 such that

d(λ) = 1

d(x0) + d(x1) = 2d(x).

De�nition 2.2. A martingale d succeeds on a sequence X ∈ 2ω, if its values are unbounded
on the pre�xes of X:

lim sup
n→∞

(X ↾ n) = ∞,

a martingale d strongly succeeds on a sequence X, if:

lim inf
n→∞

(X ↾ n) = ∞.

Sets of sequences on which d succeeds (strongly) is denoted as S[d] (Sstr[d]).

It's possible to de�ne a re�nement of a martingale: one can imagine game of chance where the
winning of the player is less than doubled on each correctly guessed outcome.

For example one can consider a strategy where a player splits his capital into halves and bets
them on the next outcome. If the winning prize is the double of bet, then the total capital of
the player remains the same (it can be thought as e�ective skip of the bet). However if the prize
is less than doubled (multiplied by 2s for some s from interval [0, 1)), then using this strategy,
player's capital decreases after each coin toss.

De�nition 2.3. s-gale is a function from �nite strings to non-negative reals d(s) : 2<ω → R≥0

such that:

d(s)(λ) = 1 (2)

d(s)(x0) + d(s)(x1) = 2sd(s)(x). (3)

So martingale is a 1-gale and the de�nition of success can be verbatim applied for s-gales.
Moreover, there is a bijection between martingales and s-gales given by d(s)(x) = 2(s−1)|x|d(x),
where d(s) is called an s-gale induced by d.

Fact 2.1. Given a computably enumerable set of lower-semicomputable martingales di, it's
possible to de�ne:

d(x) =
∞∑
i=1

di
2i

which is again a lower-semicomputable martingale, its success set contains success sets of every
di:

∀j S[dj] ⊂ S[d].

9

Proof. Identities 2.3 hold. For lower-semicomputability one can consider a computable function
d̂(x, n) =

∑n
i=1 di(x, n), which approximates values of d from below.

If X ∈ S[dj], then

lim sup
n→∞

∞∑
i=1

di(X ↾ n)
2i

≥ 1

2j
lim sup
n→∞

dj(X ↾ n) = ∞.

Fact 2.2. Given an e�ectively open set V with measure bounded by 1
k
for k ∈ N, there exists

a lower-semicomputable martingale d, such that for any sequence X from V all its pre�xes of
large enough length have values of d not less than k.

Proof. One can consider the following martingale:

d(x) = k
λ(Ωx ∩ V)

λ(Ωx)
.

It is a martingale, it is lower-semicomputable, with approximation from below implemented by
taking more and more cylinders de�ning V in calculation of the above formula, and if sequence
X from V falls into one of the cylinders Ωτ , so it has preifx τ , then the intersection in the
numerator is equal to the denominator, so the value is equal to k, and all extensions of τ have
the same value k.

Consequently, given an e�ective null set V and its e�ectively open covers Vk of measure bounded
by 1

2k
, we can consider corresponding martingales dk and sum d of their series.

d =
1

2
d1 +

1

4
d2 +

1

8
d3 + . . .

If we take a sequence X from V , then it belongs to each cover Vk, therefore for any given integer
N we can take the minimal m ∈ N, such that �rst N terms in the above sum reach their values
2k on X ↾ m, so the above sum is not less than N . Hence d succeeds on X.

It proves the following fact: for an e�ective null set V there is a lower-semicomputable martin-
gale, whose success set contains V .

When we take V equal to a universal Martin-L�of test, the corresponding martingale is called
a universal martingale and is denoted by d. It also true, that for any lower-semicomputable
martingale d the following holds:

S[d] ⊂ S[d].

Fact 2.3. Sequence X ∈ 2ω is Martin-L�of random, i� there is no lower-semicomputable mar-
tingale which succeeds on X.

10

In that sense martingales characterize randomness. Intuitively, if there is a (lower-semi-) com-
putable betting strategy which unboundedly increases winnings of a player on some sequence,
then this sequence is not random. For example one can consider strategy to bet the whole
capital on zero for every odd outcome, or to count successive ones or something more complex
(but still computable), then sequences, on which such strategies succeed, can hardly be called
random.

3 Dimension

3.1 Hausdor� dimension

In 1929 Felix Hausdor� developed a de�nition of dimension which measures �how much space
does a set locally occupy�, which is suitable to measure subsets of metric spaces. In following
de�nition we denote by |A| the diameter of set A, which is the supremum of distance between
its points: |A|= supa,b∈A{d(a, b)}.

De�nition 3.1. If A is a metric space, B ⊂ A and B is covered by a countable open cover
B ⊂

⋃
i Ui consisting of sets with diameter less than ε, we consider the in�mum taken over all

such covers:

Hd
ε (B) = inf

B⊂
⋃

Ui

{
∞∑
i=1

|Ui|d: B ⊂
⋃
i

Ui, ∀i|Ui|< ε

}
.

Then Hausdor� outer measure is de�ned by:

Hd = lim
ε→0

Hd
ε .

De�nition 3.2. Hausdor� dimension is the in�mum of the values of parameters d which make
the above outer measure equal to zero:

dimH(B) = inf
{
d ≥ 0 : Hd(X) = 0

}
.

3.2 Constructive dimension

There is a constructive version of Hausdor� dimension, which is de�ned using s-gales.

De�nition 3.3. Constructive dimension of a sequence X ∈ 2ω is the in�mum of real numbers
s ∈ [0,∞), such that there exists a constructive s-gale d(s) which succeeds on X:

dim(X) = inf
{
s ∈ [0,∞] : ∃d(s) X ∈ S[d(s)]

}
.

Constructive strong dimension is:

Dim(X) = inf
{
s ∈ [0,∞] : ∃d(s) X ∈ Sstr[d

(s)]
}
.

From the de�nition it's clear, that the dimension of any sequence cannot be greater than 1,
since for any given s > 1, the s-gale which just corresponds to a strategy which splits the

11

capital in halves on each successive outcome will succeed on any sequence. It's also clear, that
computable sequences have dimension equal to 0, and random sequences have dimension equal
to 1.

Rand ⊊ {X ∈ 2ω : dimX = 1} .

Elvira Mayodormo [7] showed, that the constructive dimension is precisely equal to the in�mum
of Kolmogorov complexity of initial segments of sequence:

dim(X) = lim inf
n→∞

K(X ↾ n)
n

.

Dim(X) = lim sup
n→∞

K(X ↾ n)
n

.

Doty [2] has shown that constructive dimension can be equivalently de�ned as the smallest
asymptotic oracle-use via all Turing-reductions.

3.3 Reducibility

For two sequences X, Y , if there is an oracle Turing machine M , such that M(X) = Y , then Y
is called Turing-reducible to X, or computable from X, or X-computable.

Two sequences X, Y (sets) are called Turing-equivalent, if each of them is Turing-reducible to
the other:

X ≤T Y,

Y ≤T X.

Turing-equivalence is an equivalence relation, and equivalence class is called Turing degree.

Notion of Turing degrees allows us to reason about �computational� power in the following
sense. Computable sequences can be computed with no oracle, but we know that there are
uncomputable sequences, however each of those uncomputable sequences can be computed via
identity oracle machine with oracle equal to the sequence itself. Thus, various oracles have
di�erent sets of computable from them sequences.

It's possible to use diagonalization method to deduce that Halting problem relativized to a
sequence R is not R-decidable. So the characteristic sequence of the relativized Halting problem
is not R-computable.

Theorem 3.1. For any sequence R ∈ 2ω there exists a sequence Y not computable via any
OTM with oracle R.

Proof. We can consider all OTMs and take the �rst bit of their output. So there is an enumer-
ation of all OTMs M1,M2, . . . producing at most one bit.

We can de�ne Y ∈ 2ω in the following way:

Y (i) = 1, if Mi(i) ↑

12

Y (i) = 1−Mi(i), if Mi(i) ↓

If Y is R-computable then it is in enumeration, so Y = Mn for some n. If Y (n) = 1 it means
eitherMn is not total, orMn(n) = 0 ̸= Y (n), both variants lead to a contradiction. If Y (n) = 0,
it would imply Mn(n) = 1 ̸= Y (n). Thus, the initial assumption that Y is R-computable does
not hold.

From the previous theorem it follows that there are in�nitely many Turing degrees. And the
next theorem tells that there are randoms of arbitrarily high Turing degree.

4 Ku�cera-G�acs theorem

The main subject of this memoire, namely Ku�cera-G�acs theorem says, that every sequence is
computable from a random one.

Theorem 4.1 (Ku�cera-G�acs). For every in�nite binary sequence X exists an oracle Turing
machine M and a Martin-L�of random sequence R ∈ Rand, such that

X ≤T R via M.

Given a sequence X, the random sequence from which X can be computed is called its code,
thus there exists a method of coding any sequence into a random one.

It's interesting to pose the next �adjacent� questions.

Question 4.1. Is it possible to have a single random R ∈ Rand to which it is possible to
reduce any other sequence

∀X ∈ 2ωX ≤T R?

The answer is no at least due to cardinality considerations: there are only countably many
OTMs, and each of them on a given oracle R produces a single sequence X, but the set 2ω is
uncountable.

Since random sequences are not computable, they cannot appear as a result of work of an OTM
with a computable oracle. Thus, it's not possible to algorithmically produce random R, from
which a given computable sequence X can be computed.

Question 4.2. What are the sequences which can be reduced to any random?

A = {X ∈ 2ω : ∀R ∈ Rand X ≤T R} .

For sure set A contains all computable sequences, as they require no information from oracle.
It turns out, that A is exactly the set of computable sequences.

Indeed, if X ∈ 2ω is computable from any random, then we can consider a set Vi of those
random sequences, from which X is computable via particular OTM Mi:

Vi = {R ∈ Rand : X ≤T R via Mi} .

13

Then the union of all Vi is the whole set of randoms:

Rand =
⋃
i∈N

Vi.

It's known, that measure of all randoms is 1, so one of the sets Vj must have positive measure
(otherwise the countable union of sets of measure zero would yield again a set with measure
equal to zero):

λ(Vj) = λ(M−1
j (X)) = c > 0.

Recall that every OTM gives rise to a semimeasure 1, so Mj produces lower-semicomputable
semimeasure a, which is smaller than the maximal semimeasure which de�nes a priori Kol-
mogorov complexity:

a(x) ≤ m(x) =⇒ KA(x) = log
1

m(x)
≤ log

1

a(x)
≤ log

1

c
.

Therefore any pre�x of X has bounded complexity, then by theorem 1.2 it is computable. This
result was �rst shown in 1956 by de Leeuw, Moore, Shannon, Shapiro.

4.1 Oracle-use

De�nition 4.1. If X ≤T Y via OTM M , then maximal index of bits which M needs during
the computation of X ↾ n is called oracle-use and is denoted as #S

R(M,n).

If the limit limn→∞
#S

R(M,n)

n
exists, it is called an asymptotical oracle-use.

First results, obtained independently by Ku�cera [4] and G�acs [3] were aimed at showing
fundamental possibility of reduction of any sequence to a random one, and had oracle use
n+ n log n+ O(1) and n+ 3

√
n log n+ O(1) respectively. Oracle-use in these constructions is

the same for all sequences.

Intuitively, �simpler� is the sequence, the less bits are needed to decode it, with a limit case of
computable sequences requiring no bits from oracle. Result, obtained by Doty [2], shows, that
it's possible to decrease asymptotical oracle-use down to informational content of the source,
namely its constructive dimension, oracle-use of his construction is n dimX +O(

√
n log n).

Barmpalias and Lewis-Pye [1] had improved the oracle-use to K(X ↾ n) + log n by presenting
a quite complex coding method. Independently Levin [5](version 21) proposed a measure-
theoretic approach which gives similar bound, this method is described more thoroughly in
[8].

4.2 Tree labeling

One of the methods of proving Ku�cera-G�acs theorem is to provide a tree labeling. If universal
Martin-L�of test with some measure outputs words σi, then complement of ∪Ωσi

is contained in
the set of all randoms:

Rand ⊃ 2ω \
⋃
i

Ωσi
.

14

Consequently, every surjective computable mapping

f : 2ω \
⋃
i

Ωσi
↠ 2ω

proves Ku�cera-G�acs theorem:
X ≤T f−1(X),

and surjectivity guarantees existence of inverse for any X.

Let us say few more words about this method. One of such approaches, shown in [9], can be
presented in the following way.

Consider a sequence of positive integers li, and an in�nite tree with branching factors equal to
2li , so the root has 2l0 children, each of the children has 2l1 children and so on. In�nite paths
in this tree can be seen as elements of the Cantor set 2ω by giving labels to the vertices on the
kth level to �nite binary words of length l0 + l1 + · · ·+ lk. This corresponds to division of any
in�nite binary sequence into blocks of length li.

The idea is to map �fast-branching� tree onto a full binary by labeling its vertices with binary
words (for example taking labels in lexicographic order) and ensuring, that if a label happens
to fall into one of the words produced by the universal Martin-L�of test, then it's always possible
to �nd another branch to which the same label can be assigned.

This is done by taking branching factors of fast enough grow, and observing the fact that the
initial measure bound on a universal Martin-L�of test guarantees, that su�ciently short words
σi cannot appear as output of a test.

This simple approach (in the sense that it does not require any additional de�nitions or con-
structions) allows to achieve the general statement of theorem, the bound on oracle-use is the
function is O(log n!) = O(n log n).

4.3 Optimal decompression rate

Fact 4.1. If S ≤T R via M, then limit oracle-use needed to obtain n bits of S divided by n (if
it exists) is not less than the constructive dimension of S:

dimS ≤ lim
n→∞

#S
R(M,n)

n
.

Proof. We can treat machine M with its program pM along with some pre�x of R as a program
to produce a pre�x of S:

U(pm ∗R ↾ #S
R(M,n)) = S ↾ n,

thus Kolmogorov complexity of S ↾ n is not greater than #S
R(M,n) + |pM |. Therefore

dimS = lim inf
n→∞

K(S ↾ n)
n

≤ lim
n→∞

#S
R(M,n)

n
.

15

Doty in his paper [2] proposed a method to decrease the asymptotic oracle-use of reduction
of X to a random sequence down to dimX by constructing for S ∈ 2ω a sequence R and a
reduction via M for which the converse to the previous inequality holds:

dimS ≥ lim
n→∞

#S
R(M,n)

n
.

Thus obtaining an equality, which also holds for DimS.

The idea of the method is following: if sequence X has dimension less than 1, then the optimal
martingale succeeds onX. We can divideX into blocks. If we haveX ↾ n and the corresponding
value d(X ↾ n), then among all strings 2k of some length k, the actual next k bits of X, namely
the string w = X[n + 1 . . . n + k] make the value d((X ↾ n)w) on average greater than other
possible strings. Thus, we can consider a subset of possible extensions of X ↾ n, which increase
value of d more than some threshold. If this set Ai is su�ciently small (by number of elements)
it's possible to store index of the actual extension of X ↾ n in this set.

It turns out, that the cardinality of the set Ai of words, on which extension of X ↾ n is greater
than some threshold is su�ciently small, so storing index in the set which requires only logAi

bits requires small number of bits.

4.4 Block coding

Described above method can be seen as a variant of block coding, when we divide the original
sequence in blocks and then sequentially encode these blocks. All such methods are limited by
an inherent overhead, which cannot be decreased as shown by the following reasoning.

Given a sequence X, we can divide it into successive blocks σi of length i (with |σ0|= 1, so the
number of bits in �rst i blocks is:

|σ0 . . . σi|=
i(i+ 1)

2
= O(i2),

or equivalently n-th bit resides in block with number i = O(
√
n).

Next, we can consider a sequence R, which is composed of shortest pre�x-free descriptions σ∗
i

of blocks σi relative to previously encoded blocks:

|σ∗
0|=K(σ0),

|σ∗
i |=K(σi|σ∗

0σ
∗
1 . . . σ

∗
i−1).

Then the original sequence X can be computed from R by by a pre�x-free machine M which
takes σ∗

0 to produce σ0 then uses σ0 and σ∗
1 to compute σ1 and so on. Since the universal machine

is pre�x-free, it can unambigously extract blocks σ∗
j from their concatenation σ∗

0 . . . σ
∗
i . If n-th

bit of X is in i-th block, then the oracle-use is equal to:

|σ∗
0σ

∗
1 . . . σ

∗
i |=

i∑
j=0

K(σj|σ∗
0 . . . σ

∗
j−1)

16

Computable transformations can increase complexity only by a constant term, and we can
apply machine M which implements decoding σ∗

0 . . . σ
∗
i+1 7→ σ0 . . . σi thus:

K(σi|σ∗
0 . . . σ

∗
i−1) ≤ K(σi|σ0 . . . σi−1) +O(1).

|σ∗
0 . . . σ

∗
i |= K(σ∗

0) +K(σ1|σ∗
0) + · · ·+K(σi|σ∗

0 . . . σ
∗
i−1) ≤

≤ K(σ0) +K(σ1|σ0) + · · ·+K(σi|σ0 . . . σi−1) +O(i).
(4)

Values of complexities of a pair of strings and conditional are connected with one another [9,
th. 21]:

Theorem 4.2 (Kolmogorov-Levin). For any words of length at most n holds:

K(σ, τ) = K(σ) +K(τ |σ) +O(log n).

Applying theorem i times to the �rst i blocks we get:

K(σ0σ1 . . . σi) = K(σ0σ1 . . . σi−1) +K(σi|σ0σ1 . . . σi−1) +O(log n) =

= K(σ0) +K(σ1|σ0) + · · ·+K(σi|σ0σ1 . . . σi−1) +O(i log n)

Combining it with inequality 4, we obtain the following bound:

|σ∗
0σ

∗
1 . . . σ

∗
i |≤ K(σ0σ1 . . . σi) +O(i log n).

Recall that i = O(
√
n) we get

|σ∗
0σ

∗
1 . . . σ

∗
i |≤ K(σ0σ1 . . . σi) +O(

√
n log n).

It means to obtain n bits of X using this encoding, we need at most K(X ↾ n) + O(
√
n log n)

bits of R, the latter term is O(n), consequently it vanishes when divided by n, so the optimal
decompression rate is achieved.

It's worth noting, that if bit at position n happens to be at the start of the next block, say n
is the �rst bit of the block i, then we need the whole block σi to decode n. Thus we may need
up to additional |σi|= i = O(

√
n) bits, which is already absorbed by the above bound.

When we consider the other block lengths |σi|, if the block length is too big, then the potential
overhead due to the fact that we may need the whole block σi becomes signi�cant. If we make
block length smaller, then more blocks are needed to cover �rst n bits, thus the total asymptotic
overhead can only increase.

However this construction does not allow to say that R is random, we can only deduce that it
has dimension equal to 1.

To show that dimF (X) = 1, we can iterate the above procedure F : X 7→ F (X). We
can consider iteration of this process, namely X 7→ F (F (X)). Then X can be computed
from F (F (X)) using the composition of computations (F (X) is computed from F (F (X)) and
X is computed from F (X)), so X can be computed from F (F (X)) with some oracle-use.
The asymptotic oracle-use of composition in that case is bounded by dimX · dimF (X). If

17

dimF (X) < 1 it would imply that we can compute X with asymptotic oracle-use lower than
dimX, which is not possible by fact 4.1.

When we examine the complexity of the code K(σ∗
0σ

∗
1 . . . σ

∗
i), we'd like to use the fact that

words σ∗
i themselves are shortest descriptions, so their complexities can be greater than their

lengths only by a �xed constant, but the fact that this constant is added in every block does
not allow to use famous theorem:

Theorem 4.3 (Levin-Schnorr). Sequence X is Martin-L�of random, i� there is a constant c,
such that for any n ∈ N:

K(X ↾ n) > n− c.

One can imagine di�erent variants of block encoding, �rst of all they can di�er by the lengths of
the blocks into which the original sequence is divided. It's possible to consider the �limit case�
example, when the lengths of the blocks are the same, then the procedure F is computable,
because it only amounts to a �nite substitution table, therefore applying F to a computable
sequence cannot yield a random, hence uncomputable result. From that it's possible deduce
a vague idea, that somehow the block lengths should be present in reasoning about block
encoding.

Next, it's possible to consider an unconditional block encoding, this variant does not imply the
optimal decompression rate. Indeed, consider

X = a0a1 . . . ,

F (X) = a∗0a
∗
1 . . .

Where a∗i is the shortest unconditional descriptions: K(ai) = |a∗i |. We would like to get a
relation between the length of code and the complexity of the source:

|a∗0a∗1 . . . a∗i |= K(a0a1 . . . ai) + o(|a0a1 . . . ai|).

It would imply that asymptotic decompression rate is equal to the constructive dimension of
the source (if the limits exist):

lim
i→∞

|a∗0a∗1 . . . a∗i |
|a0a1 . . . ai|

= lim
i→∞

K(a0a1 . . . ai)

|a0a1 . . . ai|
= dimX.

Unfortunately there is no equivalent of theorem 4.2 to connect the complexity of concatenation
of strings with their unconditional complexities with precision up to O(log n).

18

References

[1] George Barmpalias and Andrew Lewis-Pye. Compression of data streams down to their
information content, 2017.

[2] David Doty. Every sequence is decompressible from a random one. In Proceedings of
the Second Conference on Computability in Europe: Logical Approaches to Computational
Barriers, CiE'06, page 153�162, Berlin, Heidelberg, 2006. Springer-Verlag.

[3] P�eter G�acs. Every sequence is reducible to a random one. Information and Control,
70(2):186�192, 1986.

[4] Anton�in Ku�cera. Measure, Π0
1-classes and complete extensions of PA. In Recursion Theory

Week, pages 245�259, Berlin, Heidelberg, 1985. Springer Berlin Heidelberg.

[5] Leonid A. Levin. Notes for miscellaneous lectures. CoRR, abs/cs/0503039, 2005.

[6] Per Martin-L�of. The de�nition of random sequences. Information and Control, 9(6):602�
619, 1966.

[7] Elvira Mayordomo. A kolmogorov complexity characterization of constructive hausdor�
dimension. Information Processing Letters, 84(1):1�3, 2002.

[8] Alexander Shen. G�acs-Ku�cera's theorem revisited by Levin, 2021.

[9] Alexander Shen, Vladimir Andreevich Uspensky, and Nikolay Vereshchagin. Kolmogorov
Complexity and Algorithmic Randomness. American Mathematical Society, 2017.

19

	Basic definitions
	Strings and sequences
	Cantor space
	Computation
	Semicomputability
	Kolmogorov complexity
	Prefix-free Turing machines
	Oracle Turing Machines
	Algorithmic randomness

	Martingales
	Dimension
	Hausdorff dimension
	Constructive dimension
	Reducibility

	Kučera-Gács theorem
	Oracle-use
	Tree labeling
	Optimal decompression rate
	Block coding

