
Advanced Encryption Standard

Alexander Shevtsov

May 17, 2016

Contents

1 Overview 2

2 History 3

3 Mathematical preliminaries 5

4 Description of Rijndael 10
4.1 Preface . 10
4.2 Rijndael . 10
4.3 Encryption . 11
4.4 Obtaining the state . 12
4.5 Ordinary rounds . 12

4.5.1 SubBytes . 12
4.5.2 ShiftRows . 15
4.5.3 MixColumns . 16
4.5.4 AddRoundKey . 18

4.6 Key schedule . 18
4.7 Final round . 21
4.8 Encryption . 21
4.9 Decryption . 22

4.9.1 Key schedule . 23
4.9.2 InvAddRoundKey . 23
4.9.3 InvShiftRows . 23
4.9.4 InvSubBytes . 23
4.9.5 InvMixColumns . 24

1

5 Security 24
5.1 Modes of block ciphers. 24

5.1.1 Electronic Codebook (ECB) 24
5.1.2 Cipher Block Chaining (CBC) 26

5.2 Security of Rijndael . 27
5.2.1 Linear cryptoanalysis . 27
5.2.2 Differential cryptoanalysis . 28

1 Overview

Advanced Encryption Standard (AES) — cryptographic standard specifying symmet-
ric block cipher.

It was adopted by NIST after a 5-year open international process. Its original name
is Rijndael (it’s a play on the names of the two Belgian inventors: Joan Daemen and
Vincent Rijmen). In most cases titles “AES” and “Rijndael” are used interchangeably.

De facto today Rijndael is standard for block ciphers. It’s used to encrypt secret
government data, private information, messages. It’s used in specifications of W3C,
IETF, ISOC—organizations developing standards for Internet. If you’re reading that
text using computer, smartphone or any other device, most likely, that processor in
your device has internal implementation of AES. All in all, millions of people every
day rely on this algorithm.

Rijndael is a symmetric-key block algorithm. What do these words mean?

Cryptographic algorithms are used to keep information in secret, to make impossible
for an unauthorized person know it. Most of todays algorithms use secret keys which
are known only to authorized people.

Symmetric-key algorithm means that the same key is used both for encryption and
decryption, and that key must be known for both parties involved. On the contrary,
there are asymmetric algorithms using different keys for encryption and decryption,
they are also called public-key algorithms.

Block cipher means that data to encrypt or decrypt is divided into blocks of some
size, for AES the size of the block is 128 bits.

2

2 History

On the second of January, 1997 NIST announced an open competition for the new
encryption algorithm that would be used instead of Data Encryption Standard (DES),
it is a standard developed in seventies, later adopted by NIST in 1977.

In next nine months 15 candidates for the AES were accepted and NIST requested
the assistance of the cryptographic research community in analyzing the candidates.
These 15 algorithms were: CAST-256, CRYPTON, DEAL, DFC, E2, FROG, HPC,
LOKI97, MAGENTA, MARS, RC6, Rijndael, SAFER+, Serpent, Twofish.

At a minimum, the algorithm for the Advanced Encryption Standard would have to
implement symmetric key cryptography as a block cipher and support a block size of
128 bits and key sizes of 128, 192, and 256 bits.

After two AES Candidate Conferences that were held to discuss the results of the
analysis that was conducted by the international cryptographic community NIST had
chosen five finalist algorithms: MARS, RC6, Rijndael, Serpent and Twofish.

The evaluation criteria were divided into three major categories:

1. Security.

2. Cost.

3. Algorithm and Implementation Characteristics.

Security was the most important factor in the evaluation and encompassed features
such as resistance of the algorithm to cryptanalysis, soundness of its mathematical
basis, randomness of the algorithm output, and relative security as compared to other
candidates.

Cost was a second important area of evaluation that encompassed licensing require-
ments, computational efficiency (speed) on various platforms, and memory require-
ments. Since one of NIST’s goals was that the final AES algorithm be available world-
wide on a royalty-free basis, public comments were specifically sought on intellectual
property claims and any potential conflicts. The speed of the algorithm on a variety
of platforms needed to be considered. During Round 1, the focus was primarily on
the speed associated with 128-bit keys. During Round 2, hardware implementations
and the speeds associated with the 192 and 256-bit key sizes were addressed. Memory
requirements and software implementation constraints for software implementations
of the candidates were also important considerations.

The third area of evaluation was algorithm and implementation characteristics such

3

as flexibility, hardware and software suitability, and algorithm simplicity. Flexibility
includes the ability of an algorithm:

• To handle key and block sizes beyond the minimum that must be supported,

• To be implemented securely and efficiently in many different types of environ-
ments, and

• To be implemented as a stream cipher, hashing algorithm, and to provide ad-
ditional cryptographic services.

It must be feasible to implement an algorithm in both hardware and software, and
efficient firmware implementations were considered advantageous. The relative sim-
plicity of an algorithm’s design was also an evaluation factor.

During the latter discussions the question about the number of algorithms chosen for
the standard was solved to be the be one. Some statements in the favor of multiple
algorithms in standards were announced:

• In terms of resiliency, if one AES algorithm were broken, there would be at least
one more AES algorithm available and implemented in products.

• Intellectual property concerns could surface later, calling into question the
royalty-free availability of a particular algorithm. An alternative algorithm
might provide an immediately available alternative that would not be affected
by the envisioned concern.

• A set of AES algorithms could cover a wider range of desirable traits than a
single algorithm. In particular, it might be possible to offer both high security
and high efficiency to an extent not possible with a single algorithm.

However, the arguments in the favor of the only algorithm used in the standard were
more convincing:

• Multiple AES algorithms would increase interoperability complexity and raise
costs when multiple algorithms were implemented in products.

• Multiple algorithms could be seen as multiplying the number of potential “in-
tellectual property attacks” against implementers.

• The specification of multiple algorithms might cause the public to question
NIST’s confidence in the security of any of the algorithms.

• Hardware implementers could make better use of available resources by improv-
ing the performance of a single algorithm than by including multiple algorithms.

4

Later, using various criteria (general security, the efficiency of software and hard-
ware implementations, the usage of space, speed of decryption\encryption, attack
vulnerability) the Rijndael was chosen.

For additional details of the selection process, see [1].

3 Mathematical preliminaries

In this section we will discuss mathematical terms and concepts used in Rijndael.
The reader confident in his own mathematics knowledge can skip this section and
return here, if his confidence vanishes throughout the reading. All information below
can be found in any book about abstract algebra, for example [3].

Definition 3.1. Commutative ring is a non-empty set A endowed with two binary
operations: + (addition), · (multiplication), that obey following laws:

Ring is an abelian group with respect to addition:

1. (a + b) + c = a + (b + c) ∀a, b, c ∈ A—associativity of addition.

2. a + b = b + a ∀a, b ∈ A—commutativity of addition.

3. There exists an identity element of A called zero (0), such that addition of any
element a with zero produces a: ∀a ∈ A a + 0 = a

4. For any element a there exists inverse element: ∀a ∈ A ∃(−a) : a + (−a) = 0.

Ring is a monoid with respect to multiplication:

1. (a · b) · c = a · (b · c) ∀a, b, c ∈ A—associativity of addition.

2. a · b = b · a ∀a, b ∈ A—commutativity of multiplication.

3. There exists an identity element of A called unit (1), such that multiplication of
any element a with unit produces a: ∀a ∈ A a · 1 = a

Multiplication is distributive with respect to addition:

a · (b + c) = (b + c) · a = (a · b) + (a · c) ∀a, b, c ∈ A.

5

Binary operations

+ : A× A→ A
· : A× A→ A

are just functions that take two elements of A and produce an element of A. They
are usually written in infix form a + b, instead of +(a, b) that is used for almost all
functions.

Further we will use word “ring” for the term “commutative ring”. We will also omit
symbol of multiplication and write ab instead of a · b.

Examples of rings: integer numbers Z, rational numbers Q, real numbers R, rings of
integers modulo n: Zn, polynomial rings K[x], formal power series K[[x]], etc.

You should understand, that −a is a whole symbol, not a result of applying “minus“
operation to element a. On the contrary, the concept of subtraction is defined in terms
of inverse elements. To subtract b from a means to add (−b) to a: a− b = a + (−b).

Definition 3.2. An element a of ring A is called invertible, if it has multiplicative
inverse: ∃b ∈ A : a · b = 1. Multiplicative inverse of a is denoted as a−1.

For example, in ring Z there are two invertible elements: 1 and −1.

What are the invertible elements of real numbers R?

Definition 3.3. Field is a commutative ring where 0 6= 1 and every nonzero element
is invertible.

Examples of fields: rational numbers Q, real numbers R, complex numbers C. Integer
numbers do not form a field.

Roughly speaking, elements of fields behave like usual numbers, like rationals or reals.
For example these facts are true:

1. a · 0 = 0 for any element a.

2. Fields have no zero divisors: from ab = 0 it follows, that a = 0 or b = 0.

Theorem 3.1. Let a, b be elements of a field F. If ab = 0, then a = 0 or b = 0 (or
both).

6

Proof. If both a and b are not invertible, then both of them are equal to zero. Suppose
one of them is invertible, for example a. Then multiply identity ab = 0 by a−1:

a−1 · ab = a−1 · 0
(a−1a)b = 0

1 · b = 0

b = 0

Exercise 1

Prove the first statement from above.
Answer of exercise 1

Using properties we get: 0a = (0 + 0)a = 0a + 0a, therefore 0a − 0a = 0a, that is
equivalent to 0a = 0.

Fields are distinguished by the number of elements, if a field has finite number of
elements it’s called finite or Galois1 field, if a field has infinite number of elements
then it’s called (surprisingly) an infinite field. We are going to work only with finite
fields.

There are fields, that behave in not so usual way, for example, 1 + 1 + 1 = 0 in a field
GF(3).

Definition 3.4. Characteristic of a field is the smallest positive number n, such that

1 + 1 + . . . 1︸ ︷︷ ︸
n times

= 0.

If there is no such number n, then characteristic is defined to be zero.

Theorem 3.2. If a field has finite characteristic n, then n is necessarily a prime
number.

You can try to prove that theorem yourself.

Any finite field has number of elements equal to pn, where p is a prime number and
n is some integer greater than zero. Such field is denoted as GF(pn). That field has

1Évariste Galois, 1811—1832, French mathematician.

7

characteristic p. Finite fields with the same number of elements are isomorphic, they
form the same algebraic structure, differing only in their representation.

You should be familiar with modular arithmetic of Zn. Elements of that ring are
“remainders”2 of division of integers by n. If n is prime, then it’s a field that is
interchangeably denoted as Zn, GF(n), Fn.

You can define a structure of a field on some set A by specifying its multiplication
and addition tables, for example GF(3) has three elements we denote by a, b, c:

+ a b c

a a b c

b b c a

c c a b

· a b c

a a a a

b a b c

c a c b

You can ensure, that the field laws are satisfied, so A with these operations is indeed
a field. As it’s been already said, that field is isomorphic to any other field with 3
elements. Actually instead of symbols a, b, c we could use 0, 1, 2 and GF(3) is just
a field Z3 of integers modulo 3 where the tables look like:

+ 0 1 2

0 0 1 2

1 1 2 0

2 2 0 1

· 0 1 2

0 0 0 0

1 0 1 2

2 0 2 1

Definition 3.5. Polynomial over field F is an expression b0 + b1x+ b2x
2 + · · ·+ bkx

k,
where all coefficients bi ∈ F. Addition and multiplication of polynomials are defined
as usual, you expand the parentheses and reduce the common terms.

For instance, (2x + 3x2) · (1 + x) = 2x + 3x2 + 2x2 + 3x3 = 2x + 5x2 + 3x3.

Theorem 3.3. Polynomials over a field form a ring.

The degree of a polynomial is the highest degree of its nonzero terms. The degree of
x2 + x3 is 3, the degree of 3 + 0x2 is 0. The degree of a polynomial f is denoted as
deg f

2To be precise, that ring is not a ring of remainders, rather a ring of classes of equivalence of
remainders, that’s why this term will be used in quotes.

8

Just like as integers, you can define modulo operation on polynomial ring. For two
polynomials f and g there exist unique polynomials q and r, such that:

f = gq + r,

where deg r < deg g. Polynomial q is called quotient and r is called remainder.

The same stands for modulo ring, we can define a ring of “remainders” of division
by a given polynomial f (it’s also called reduction polynomial). That ring consists
of polynomials with degree less than degree of f . With an accurate choice of f this
ring becomes a field.

Definition 3.6. Polynomial f over field F is said to be irreducible, if there are no
polynomials g, h over F with degrees greater than zero, such that f = gh.

For example, x2 + 1 is irreducible over R, but it’s reducible over C, as we can decom-
pose it as x2 + 1 = (x + i)(x− i).

Theorem 3.4. If f is an irreducible polynomial, then the ring of “remainders” of
division by f is a field.

For a finite field GF(pn), field of polynomials modulo some polynomial f is considered
to be a canonical representation of that field.

Let’s consider field GF(22) as a field of polynomials over GF(2) modulo f = x2+x+1.
Writing out all polynomials from that field: 0, 1, x, x + 1. Tables for that field:

+ 0 1 x x+1

0 0 1 x x+1

1 1 0 x+1 x

x x x+1 0 1

x + 1 x+1 x 1 0

· 0 1 x x+1

0 0 0 0 0

1 0 1 x x+1

x 0 x x+1 1

x + 1 0 x+1 1 x

For instance, (x + 1) · (x + 1) = x2 + 2x + 1 = x2 + 1. (Don’t forget, coefficients are
from GF(2), where 2=0). And x2 + 1 equals x modulo x2 + x + 1.

Further we will need to consider polynomials representing field GF(28) modulo x8 +
x4+x3+x+1. They are just polynomials of degree not greater than 7 with coefficients
either 1 or 0.

Exercise 2

9

What is the inverse of x in GF(28) with reducing polynomial x8 + x4 + x3 + x + 1?

Answer of exercise 2

x7 + x3 + x2 + 1.

Byte is a collection of 8 bits, therefore every byte represents some polynomial from
GF(28). For example, 10011111 represents x7 +x4 +x3 +x2 +x+1. Note that sum of
two polynomials is equal to the XOR (exclusive bitwise “or” operation) of bytes they
are represented by. Usually we will denote XOR operation by ⊕, or just by ordinary
+.

4 Description of Rijndael

4.1 Preface

In this section we will describe the specification of Rijndael and implement it in
Wolfram Mathematica language.

Mathematica is a high-level language that definitely wasn’t created for low-level op-
erations, but Rijndael description mostly uses them. Though, we will encounter some
advantages of Mathematica and its built in packages.

Anyway, code from this paper should be not considered as efficient implementation of
Rijndael, rather as educational one. Don’t copy verbatim code from the code snippets,
as some characters from PDF file couldn’t be copied right to the Wolfram notebook.
We also will use CamelCase titles for functions. We will use decimal representation
of bytes, for example integer 255 represents byte 111111112.

4.2 Rijndael

Rijndael is a key-iterated block cipher: the input for it is divided into blocks of
predefined size. To obtain ciphertext an iterative application of transformation (called
round) to the block is used.

Unencrypted data is called plaintext and the encrypted data is called ciphertext. Of
course, data needn’t to be just text, it could be anything translatable into series of
bytes.

The input and output data of Rijndael are one-dimensional arrays of bytes. For
encryption the input is a plaintext block and a master key (or cipher key, or just

10

key, if there is no confusion with “round key”), the output is a ciphertext block. For
decryption, the input is a ciphertext block and a master key (decryption key), the
output is a plaintext block.

Depending on the key length, number of rounds can be 10 for 128-bit key, 12 for
196-bit key and 14 for 256-bit key. The block length adopted by Advanced Encryp-
tion Standard is always 128 bits long, however, in original specification of Rijndael
algorithm block size could vary.

4.3 Encryption

Core steps for encryption can be written as:

1. Obtaining the state

2. Key schedule

3. Initial round

3.1. AddRoundKey(state, round key)

4. Ordinary rounds

4.1. SubBytes(state)

4.2. ShiftRows(state)

4.3. MixColumns(state)

4.4. AddRoundKey(state, round key)

5. Final round

5.1. SubBytes(state)

5.2. ShiftRows(state)

5.3. AddRoundKey(state, round key)

We will discuss steps of the algorithm not in the order shown above.

As you could notice, the only difference between “ordinary” round and the final round
is the absence of MixColumn step.

11

4.4 Obtaining the state

Rijndael operations are defined to act on a “state” which is 4 by 4 array of bytes.

Let’s denote 16 bytes of the plaintext by b1b2 . . . b16. These bytes arranged into a
matrix (further the word matrix will be used to denote a two-dimensional array) in
a following way:

A =

b1 b5 b9 b13
b2 b6 b10 b14
b3 b7 b11 b15
b4 b8 b12 b16

 .

So, if we as usual denote by aij an element of A in ith row and jth column, the rule
for making matrix from bytes can be written as

aij = bi+4j, where 1 ≤ i ≤ 4 and 0 ≤ j ≤ 3

with enumeration of columns and rows beginning from one.

The following Wolfram Mathematica code arranges first 16 elements of a list into a
matrix in the needed way.

State [l i s t] := Table [l i s t [[i + 4∗ j]] , { i , 1 , 4} , { j , 0 , 3}]

After encryption is done, i.e. the final round was performed and we got the resulting
state a, the cyphertext is constructed from the state by taking bytes in the same
order:

ci = aimod4, i/4.

4.5 Ordinary rounds

4.5.1 SubBytes

The SubBytes step is the only non-linear transformation of the state. For SubBytes
action we need to treat every byte of the state as a polynomial representation of the
finite field GF(28) element with x8 + x4 + x3 + x + 1 polynomial used for modulo
reduction.

12

The action of SubBytes consists of taking a multiplicative inverse of a polynomial
(with zero mapped to the zero) and an affine transformation 3.

So, we take a byte b, treat it as polynomial, find its inverse c = b−1 with coefficients
c0, c1, . . . , c7, afterwards affine transformation is used as follows:

SubBytes(b) =

1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1

c0
c1
c2
c3
c4
c5
c6
c7

+

1
1
0
0
0
1
1
0

.

Wolfram Mathematica has a package used for computations over finite fields, however,
it doesn’t have the inverse function, so we will find multiplicative inverses by extended
Euclidean algorithm.

Wolfram code:

InversePolynomia l [p] :=
I f [p === 0 , 0 ,
PolynomialExtendedGCD [x8 + x4 + x3 + x + 1 , p , x , Modulus > 2] [[

2 , 2]]]

This function computes the multiplicative inverse of the polynomial p(x) modulo
chosen polynomial x8 + x4 + x3 + x + 1. For instance, the inverse of the polynomial
x4 + x + 1 is the polynomial x6 + x3 + x + 1. One can ensure by multiplying:

(x4 + x + 1) · (x6 + x3 + x + 1) = 1 + 2x + x2 + x3 + 2x4 + x5 + x6 + 2x7 + x10 =

= 1 + x2 + x3 + x5 + x6 + x10 = 1 (mod x8 + x4 + x3 + x + 1).

List of coefficients of a polynomial can be obtained by using CoefficientList.

Note, that InversePolynomial function expects the input to be a polynomial of
variable x, not a list of coefficients.

3Affine transformation F of a vector v (in our case it’s just polynomial over finite field) is a
composition of a linear transformation with an addition of some vector b: F (v) = A(v) + b. In our
case that means multiplication of the column-vector v by some matrix A and summing the result
with some vector b.

13

Exercise 1

Create function PolynomialFromByte that takes a byte and returns a polynomial
representing it.

Answer of exercise 1

PolynomialFromByte [byte] :=
xˆRange [0 , 7] . Reverse [PadLeft [IntegerDigits [byte , 2] , 8]]

So, SubBytes function looks as follows:

SubBytes [p] :=Part [FromDigits [Mod[

1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1
1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1

. Reverse [

CoefficientList [InversePolynomia l [p] , x , 8]] +

0
1
1
0
0
0
1
1

, 2] , 2] , 1]

Composing SubBytes with PolynomialFromByte will give us a function that takes
byte and produces its inverse.
For instance, SubBytes[PolynomialFromByte[3]] produces 123.

In further text function SubBytes is exactly the composition from above, so it takes
bytes and returns bytes.

Instead of writing the inverse and affine transformation functions for every implemen-
tation, a precomputed substitution table (called S-box) can be made for all bytes.

Exercise 2

Create such a table.

14

Answer of exercise 2

Table [SubBytes [PolynomialFromByte [i+j]] , { i , 0 , 15} ,{ j , 0 , 1 5}]

Usually that table is represented in hexadecimal and it looks like:

4.5.2 ShiftRows

At the step ShiftRows every row of the state is cyclically shifted to the left. The ith
row is shifted i− 1 positions to the left.

Schematically the transformation could be viewed as:
a b c d
e f g h
i j k l
m n o p

 7→

a b c d
f g h e
k l i j
p m n o

 .

Exercise 3

Implement ShiftRows function in Wolfram Mathematica.

15

Answer of exercise 3

ShiftRows [s t a t e] := Module [{m = s t a t e } ,
m[[2]] = RotateLeft [s t a t e [[2]] , 1] ;
m[[3]] = RotateLeft [s t a t e [[3]] , 2] ;
m[[4]] = RotateLeft [s t a t e [[4]] , 3] ; m]

4.5.3 MixColumns

The MixColumns step operates on the columns of the state. The column consisting of
four bytes is treated as a polynomial over GF(28)4. Polynomial-column is multiplied
by a fixed polynomial c(x) = 0x03 ·x3 +x2 +x+ 0x02. Here the coefficients 0x03 and
0x02 are treated as elements of GF(28). Multiplication is reduced modulo x4 + 1.

Polynomial c(x) is coprime to x4+1, therefore it’s invertible. It ensures that MixColumns
operation is invertible and ciphertext can be decrypted in the only right way.

Multiplication can be written as matrix multiplication. Let’s denote

b(x) = c(x) · a(x) mod (x4 + 1),

then
b0
b1
b2
b3

 =

0x02 0x03 0x01 0x01
0x01 0x02 0x03 0x01
0x01 0x01 0x02 0x03
0x03 0x01 0x01 0x02

a0
a1
a2
a3

 .

For this step Mathematica’s package “FiniteFields” fits perfectly. An element of
GF(28), for example the polynomial x5 + x3 + x in this package is defined as

GF[2 ,{1 , 1 , 0 , 1 , 1 , 0 , 0 , 0 , 1}] [{0 , 1 , 0 , 1 , 0 , 1 , 0 , 0}] .

Where 2 denotes the characteristic of the field, the first list {1,1,0,1,1,0,0,0,1} de-
notes the coefficients of the reducing polynomial 1+x+x3+x4+x8 and {0,1,0,1,0,1,0,0}
denotes the list of coefficients of considered polynomial.

So, for implementing this step we need to translate hexadecimal values 0x02, 0x03,
0x01 to Mathematica’s finite field elements and do the same with values a0, a1, a2, a3.
After such a translation ordinary matrix multiplication would produce the needed
result.

4Don’t mix up with polynomials over GF(2), coefficients of a polynomial over GF(28) can be
themselves treated as polynomials over GF(2).

16

Exercise 4

Implement ShiftRows function.
Hint: try to use ToElementCode and FromElementCode functions from package
FiniteFields.

Answer of exercise 4

SetFieldFormat [GF[2 ,{1 , 1 , 0 , 1 , 1 , 0 , 0 , 0 , 1}] , FormatType > FullForm] ;
one = GF[2 , { 1 , 1 , 0 , 1 , 1 , 0 , 0 , 0 , 1}] [{ 1}] ;
two = GF[2 ,{ 1 , 1 , 0 , 1 , 1 , 0 , 0 , 0 , 1}] [{ 0 , 1}] ;
th r ee = GF[2 ,{ 1 , 1 , 0 , 1 , 1 , 0 , 0 , 0 , 1}] [{ 1 , 1}] ;
MixColumn [column] := ({

{two , three , one , one } ,
{one , two , three , one } ,
{one , one , two , th ree } ,
{ three , one , one , two}})
. (FromElementCode [GF[2 , {1 ,1 ,0 ,1 ,1 ,0 ,0 ,0 ,1}] ,#]&/ @column)

MixColumns [s t a t e] := Module [{m = s t a t e } ,
m[[All , 1]] = ToElementCode [#] & /@ MixColumn [s t a t e [[All , 1]]] ;
m[[All , 2]] = ToElementCode [#] & /@ MixColumn [s t a t e [[All , 2]]] ;
m[[All , 3]] = ToElementCode [#] & /@ MixColumn [s t a t e [[All , 3]]] ;
m[[All , 4]] = ToElementCode [#] & /@ MixColumn [s t a t e [[All , 4]]] ; m]

Exercise 5

Ensure that multiplying of a polynomials modulo x4 + 1 can be written as a matrix
multiplication.
Hint: expand (c0 + c1x+ c2x

2 + c3x
3) · (a0 + a1x+ a2x

2 + a3x
3) and reduce the result

modulo x4 + 1. Try to emulate the result by matrix multiplication.

Answer of exercise 5

Expanding gives us following:

(c0 + c1x + c2x
2 + c3x

3) · (a0 + a1x + a2x
2 + a3x

3) =

= a3c3x
6+x5 (a3c2 + a2c3)+x4 (a3c1 + a2c2 + a1c3)+x3 (a3c0 + a2c1 + a1c2 + a0c3) +

+ x2 (a2c0 + a1c1 + a0c2) + x (a1c0 + a0c1) + a0c0.

Modulo x4 + 1 it’s the same as:

x3 (a3c0 + a2c1 + a1c2 + a0c3) + x2 (a2c0 + a1c1 + a0c2 − a3c3) +

+ x (a1c0 + a0c1 − a3c2 − a2c3) + a0c0 − a3c1 − a2c2 − a1c3.

17

Don’t forget, that in the field of characteristic 2 addition and subtraction are the
same operations. Finally we get:

x3 (a3c0 + a2c1 + a1c2 + a0c3) + x2 (a2c0 + a1c1 + a0c2 + a3c3) +

+ x (a1c0 + a0c1 + a3c2 + a2c3) + a0c0 + a3c1 + a2c2 + a1c3.

On the other hand, let’s compute the result of matrix multiplication:
c0 c3 c2 c1
c1 c0 c3 c2
c2 c1 c0 c3
c3 c2 c1 c0

a1
a2
a3
a4

 =

a0c0 + a3c1 + a2c2 + a1c3
a1c0 + a0c1 + a3c2 + a2c3
a2c0 + a1c1 + a0c2 + a3c3
a3c0 + a2c1 + a1c2 + a0c3

 .

You can observe, that coefficients of the resulting polynomial are exactly the elements
of the result of matrix multiplication.

4.5.4 AddRoundKey

Perhaps, this step is the simplest one. For every round there is a round key obtained
from the master key during key schedule process that would be described in next
section.

For now, assume we got 128-bit round key, the action of AddRoundKey is just the
state combined with round key using bitwise XOR operation. If we have the state as
matrix B with entries bij and the round key is matrix R with entries rij, the resulting
state is matrix A with entries aij = bij ⊕ rij, where ⊕ denotes XOR operation.

AddRoundKey(B,R) =

b11 b12 b13 b14
b21 b22 b23 b24
b31 b32 b33 b34
b41 b42 b43 b44

⊕

r11 r12 r13 r14
r21 r22 r23 r24
r31 r32 r33 r34
r41 r42 r43 r44

 = B ⊕R.

In Wolfram language that operation is named BitXor.

4.6 Key schedule

For simplicity, we will describe the case of 128-bit key (so the number of rounds is
10), the other cases are similar to that one with slight changes. For the encryption

18

of one block it’s needed to have 11 round keys: 1 for initial round, 9 for “ordinary”
rounds and 1 for the final round. Each round key has length of 128 bits.

The master key bytes z1z2 . . . z16 should be arranged into a square matrix in the same
way as bytes of the plaintext form the initial state:

Z =

z1 z5 z9 z13
z2 z6 z10 z14
z3 z7 z11 z15
z4 z8 z12 z16

 .

During key schedule additional columns would be added to that matrix, so the re-
sulting matrix has 44 columns. Columns to be added are recursively defined in terms
of previously defined columns. Each column depends on the previous column, on the
column 4 positions earlier and on the round constants. We will denote ith column as
ci and start counting columns from zero.

Column ci with number not multiple of 4 is obtained by XOR’ing columns ci−1 and
ci−4. For example,

c9 = c8 ⊕ c5.

Column c4j with number being the multiple of 4 is obtained by XOR’ing the column
c4(j−1) and the modified previous column f(c4j−1). Function f at first modifies all
bytes of the column by SubBytes function:

a
b
c
d

 7→

SubBytes(a)
SubBytes(b)
SubBytes(c)
SubBytes(d)

 .

Afterwards the column is cyclically rotated (of course, vertically) by one position
down:

SubBytes(a)
SubBytes(b)
SubBytes(c)
SubBytes(d)

 7→

SubBytes(b)
SubBytes(c)
SubBytes(d)
SubBytes(a)

 .

After rotation the resulting column is XOR’ed with round constant column (RCC),

19

its entries are:
RC(j)
0x00
0x00
0x00

 .

So, the first byte is the only non-zero one in the column. The value RC(j) is defined
recursively:

RC(1) = 0x01

RC(2) = 0x02

RC(j) = 0x02 · RC(j − 1).

Summing up all the modifications we can write:

c4j = c4(j−1) ⊕ Rotate(SubBytes(c4j−1))⊕ RCC(j).

The round key for the ith round is obtained by taking c4i, c4i+1, c4i+2, c4i+3 columns.
The index of the initial round is 0, the index of a final round is 10.

Let’s create the function that makes the expanded keys consisting of 44 columns. We
will need a function to insert columns to a matrix:

InsertColumn [matrix , p o s i t i o n , column] :=
Transpose [Insert [Transpose [matrix] , column , p o s i t i o n]]

Next we need RCC function.

Exercise 6

Create RCC function.
Answer of exercise 6

RC[i] :=
I f [i == 1 , GF[2 ,{1 , 1 , 0 , 1 , 1 , 0 , 0 , 0 , 1}] [{1}] ,
I f [i == 2 , GF[2 ,{1 , 1 , 0 , 1 , 1 , 0 , 0 , 0 , 1}] [{0 , 1}] , RC[2] ∗RC[i - 1]]]

RCC[i] := {ToElementCode [RC[i]] , 0 , 0 , 0}

After that is done, we will create function ModifyKeystate to insert a single column
into expanded key. It may be done as this:

20

ModifyKeystate [keys ta te , i] :=
InsertColumn [keystate , i ,

I f [Mod[i - 1 , 4] != 0 ,
BitXor [k ey s ta t e [[All , i - 1]] , k ey s ta t e [[All , i - 4]]] ,
Flatten [
BitXor [k ey s ta t e [[All , i - 4]] ,
RotateLeft [
Map[SubBytes , Map[PolynomialFromByte , keys ta t e [[All , i - 1]]]]] ,
RCC[Quotient [i - 1 , 4]]]]]]

Finally, we get ExpandKey function:

ExpandKey [k e y s t a t e] :=Fold [ModifyKeystate , keystate ,Range [5 , 4 4]]

Round keys are successively taken 4 columns of the expanded key.

4.7 Final round

As it was stated earlier, the only difference between final and “ordinary” round is the
absence of MixColumn step.

4.8 Encryption

Now we got all prerequisites for the encryption. Let’s encrypt one of the test values
provided by authors of algorithm.

• Key (in hexadecimal): “ffffffffffffffffffffffffffffffff”.

• Data to encrypt: ”00000000000000000000000000000000”

Exercise 7

Encrypt data with given key.

Answer of exercise 7

At first, let’s define some helper functions:

DoRound [s t a t e , roundkey] :=
BitXor [MixColumns [ShiftRows [Map[SubBytes , s ta te , { 2 }]]] , roundkey]

21

FinalRound [s t a t e , roundkey] :=
BitXor [ShiftRows [Map[SubBytes , s ta te , { 2 }]] , roundkey]

Input data and key:

key = I n t e r p r e t e r [” HexInteger ”] /@ Table [” f f ” , { i , 1 6 }] ;
data = I n t e r p r e t e r [” HexInteger ”] /@ Table [”00” , { i , 1 6 }] ;
k ey s ta t e = State [key] ;
da ta s ta t e = State [data] ;

The process of encryption:

expanded = ExpandKey [keys ta t e] ;
i n i t s t a t e = BitXor [datastate , keys ta t e] ;
s t a t e = Fold [DoRound , i n i t s t a t e ,

Table [expanded [[All , 4∗ i +1; ;4∗ i +4]] ,{ i , 1 , 9 }]] ;
f i n a l k e y =

Table [expanded [[All , 4∗ i +1; ;4∗ i +4]] ,{ i , 0 , 1 0 }] [[1 1]] ;
BaseForm [FinalRound [s ta te , f i n a l k e y] // MatrixForm , 16]

That gives us output (displayed in decimal):
161 135 137 56
246 125 100 191
37 95 72 201
140 205 69 44

 .

It’s exactly what we wanted to get!

4.9 Decryption

A short overview of decryption process. Decryption is done by similar steps in reverse
order:

1. Key schedule

2. Inverse final round

2.1. InvAddRoundKey(state, round key)

2.2. InvShiftRows(state)

2.3. InvSubBytes(state)

22

3. Inverse ordinary rounds

3.1. InvAddRoundKey(state, round key)

3.2. InvMixColumns(state)

3.3. InvShiftRows(state)

3.4. InvSubBytes(state)

4. Inverse initial round

4.1. InvAddRoundKey(state, round key)

4.9.1 Key schedule

As the algorithm is symmetric, same round keys are used for decryption, just in
reversed order. That means, inverse initial round that is done last uses the master
key.

4.9.2 InvAddRoundKey

This step is identical to AddRoundKey, as XOR operation is inverse to itself.

4.9.3 InvShiftRows

At that step rows shifting is reversed:
a b c d
e f g h
i j k l
m n o p

 7→

a b c d
h e f g
k l i j
n o p m

 .

4.9.4 InvSubBytes

For this step we need to do the inverse affine transformation and to take a multiplica-
tive inverse. Usually it’s done by using precomputed inverse S-Box:

23

4.9.5 InvMixColumns

This step is done just like the direct MixColumns with the multiplication matrix
changed to this:

0x0e 0x0b 0x0d 0x09
0x09 0x0e 0x0b 0x0d
0x0d 0x09 0x0e 0x0b
0x0b 0x0d 0x09 0x0e

 .

5 Security

5.1 Modes of block ciphers.

Block ciphers are defined to encipher blocks, but usually data the the user wants to
encrypt is not equal to the size of the block, so there are different methods of using
block ciphers to encrypt data that is longer than one block. These methods are called
modes of operations. We will have a short overview on two of them here.

5.1.1 Electronic Codebook (ECB)

It’s the simplest one, the data is divided into blocks and each of them is encrypted
with the same key.

24

This mode could not be considered secure, as after encryption blocks of the same
plaintext have the same ciphertext. To illustrate this idea, one can encrypt bytes of
the image:

Despite you can’t decipher a single block to obtain a plaintext, you can see the pattern
of blocks of the original plaintext. Compare it to the same image encrypted using
another mode (CBC):

25

5.1.2 Cipher Block Chaining (CBC)

In this mode each block of plaintext is XORed with the previous ciphertext block
before being encrypted. This way, each ciphertext block depends on all plaintext
blocks processed up to that point.

This mode is the most common one used for encryption. It’s slower than ECB and
could not be done in parallel.

With these words been said about modes, it’s clear, that security of ciphertext is not
only about the security of the used algorithm, but of course, at first attention is paid

26

to it.

5.2 Security of Rijndael

Cryptographic attacks are made to have some sort of solution for obtaining plaintext
having only ciphertext. A cipher is considered “broken” if there is a method that is
sufficiently faster than brute force.

Brute force is a method of successively checking all possible variants for the plaintext.
In AES key length is 128 bits, that means there are 2128 (≈ 1038) different keys.
Modern supercomputers can check approximately 1018 blocks per second, so breaking
a single block with by brute force will consume more time than the age of the universe
(≈ 1017 seconds).

There are more sophisticated methods of breaking ciphers. Two of them will be
shortly discussed here. Both of them could not be used for AES (and not any other
publicly known method).

5.2.1 Linear cryptoanalysis

It was discovered by Mitsuru Matsui in 1992 and was aimed to crack DES and FEAL
algorithms.

The idea consists of two steps, first one is to construct linear equations involving
plaintext, key and ciphertext. These equations should have high probability of being
true.

The second step is about using this equations along with known plaintext-ciphertext
pairs of to find the key.

A condition for applying linear cryptanalysis to a block cipher is to find “effective”
linear expressions. Let A(i1, i2, . . . , ia) be the bitwise sum of the bits of A with indices
in a selection pattern i1, i2, . . . , ia:

A(i1, i2, . . . , ia) = A(i1)⊕ A(i2)⊕ . . .⊕ A(ia)

Let P , C and K denote the plaintext, the ciphertext and the key, respectively.

The aim is to find linear experssions of the following type:

P (i1, i2, . . . , ia)⊕ C(j1, j2, . . . , ja) = K(k1, k2, . . . , ka)

27

with indices i, j, k being fixed bit locations.

The effectiveness, or deviation, of such a linear expression in linear cryptoanalysis is
given by |p− 1/2| where p is the probability that the expression holds. By checking
the value of the left-hand side of for a large number of plaintext-ciphertext pairs,
the right-hand side can be guessed by taking the value that occurs most often. In
principle, this gives a single bit of information about the key. It’s known that the
probability of making a wrong guess is very small if the number of plaintext-ciphertext
pairs is larger than |p− 1

2
|−2.

As the only non-linear step of AES is the use of S-box, analysis is concentrated on it.

Further information can be found in [4].

5.2.2 Differential cryptoanalysis

Differential cryptanalysis is a chosen-plaintext (difference) attack in which a large
number of plaintext-ciphertext pairs are used to determine the value of key bits. Usu-
ally difference of plaintext is defined as result A′ of XOR. After encrypting plaintext
with known difference, the attacker then computes the differences of the correspond-
ing ciphertexts, hoping to detect statistical patterns in their distribution. The work
factor of the attack depends critically on the largest probability Prob(B′|A′) with B′

being a difference at some fixed intermediate stage of the block cipher, e.g. at the
input of the last round.

In the basic form of the attack, key information is extracted from the output pairs
in the following way. For each pair it is assumed that the intermediate difference is
equal to B′. The absolute values of the output pair and the (assumed) intermediate
difference B′ impose restrictions upon a number l of key bits of the last round key. A
pair is said to suggest the subkey values that are compatible with these restrictions.
While for some pairs many keys are suggested, no keys are found for other pairs ,
implying that the output values are incompatible with B′. For each suggested subkey
value, a corresponding entry in a frequency table is incremented.

The attack is successful if the correct value of the subkey is suggested significantly
more often than any other value.

Further reading: [5].

28

References

[1] Report on the Development of the Advanced Encryption Standard
http://csrc.nist.gov/archive/aes/

[2] Joan Daemen and Vincent Rijmen. The Design of Rijndael. Springer-Verlag New
York, Inc., Secaucus, NJ, USA, 2002.

[3] Serge Lang. Algebra. Springer-Verlag, New York, 2002.

[4] Mitsuru Matsui. Linear Cryptanalysis Method for DES Cipher. In Workshop on
the theory and application of cryptographic techniques on Advances in cryptol-
ogy (EUROCRYPT ’93), Tor Helleseth (Ed.). Springer-Verlag New York, Inc.,
Secaucus, NJ, USA, 386-397.

[5] Biham, E. and A. Shamir. Differential Cryptanalysis of DES-like Cryptosystems.
Advances in Cryptology — CRYPTO’90. Springer-Verlag.

29

	Overview
	History
	Mathematical preliminaries
	Description of Rijndael
	Preface
	Rijndael
	Encryption
	Obtaining the state
	Ordinary rounds
	SubBytes
	ShiftRows
	MixColumns
	AddRoundKey

	Key schedule
	Final round
	Encryption
	Decryption
	Key schedule
	InvAddRoundKey
	InvShiftRows
	InvSubBytes
	InvMixColumns

	Security
	Modes of block ciphers.
	Electronic Codebook (ECB)
	Cipher Block Chaining (CBC)

	Security of Rijndael
	Linear cryptoanalysis
	Differential cryptoanalysis

